
7 | WORK AND KINETIC
ENERGY

Figure 7.1 A sprinter exerts her maximum power to do as much work on herself as possible in the short time that her foot is in
contact with the ground. This adds to her kinetic energy, preventing her from slowing down during the race. Pushing back hard
on the track generates a reaction force that propels the sprinter forward to win at the finish. (credit: modification of work by
Marie-Lan Nguyen)
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Introduction
In this chapter, we discuss some basic physical concepts involved in every physical motion in the universe, going beyond the
concepts of force and change in motion, which we discussed in Motion in Two and Three Dimensions and Newton’s
Laws of Motion. These concepts are work, kinetic energy, and power. We explain how these quantities are related to one
another, which will lead us to a fundamental relationship called the work-energy theorem. In the next chapter, we generalize
this idea to the broader principle of conservation of energy.

The application of Newton’s laws usually requires solving differential equations that relate the forces acting on an object
to the accelerations they produce. Often, an analytic solution is intractable or impossible, requiring lengthy numerical
solutions or simulations to get approximate results. In such situations, more general relations, like the work-energy theorem
(or the conservation of energy), can still provide useful answers to many questions and require a more modest amount
of mathematical calculation. In particular, you will see how the work-energy theorem is useful in relating the speeds
of a particle, at different points along its trajectory, to the forces acting on it, even when the trajectory is otherwise
too complicated to deal with. Thus, some aspects of motion can be addressed with fewer equations and without vector
decompositions.
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7.1 | Work

Learning Objectives

By the end of this section, you will be able to:

• Represent the work done by any force

• Evaluate the work done for various forces

In physics, work represents a type of energy. Work is done when a force acts on something that undergoes a displacement
from one position to another. Forces can vary as a function of position, and displacements can be along various paths

between two points. We first define the increment of work dW done by a force F→ acting through an infinitesimal

displacement d r→ as the dot product of these two vectors:

(7.1)dW = F→ · d r→ = | F→ ||d r→ |cos θ.

Then, we can add up the contributions for infinitesimal displacements, along a path between two positions, to get the total
work.

Work Done by a Force

The work done by a force is the integral of the force with respect to displacement along the path of the displacement:

(7.2)WAB = ∫
path AB

F→ · d r→ .

The vectors involved in the definition of the work done by a force acting on a particle are illustrated in Figure 7.2.

Figure 7.2 Vectors used to define work. The force acting on a
particle and its infinitesimal displacement are shown at one
point along the path between A and B. The infinitesimal work is
the dot product of these two vectors; the total work is the
integral of the dot product along the path.

We choose to express the dot product in terms of the magnitudes of the vectors and the cosine of the angle between
them, because the meaning of the dot product for work can be put into words more directly in terms of magnitudes and
angles. We could equally well have expressed the dot product in terms of the various components introduced in Vectors.
In two dimensions, these were the x- and y-components in Cartesian coordinates, or the r- and φ -components in polar

coordinates; in three dimensions, it was just x-, y-, and z-components. Which choice is more convenient depends on the
situation. In words, you can express Equation 7.1 for the work done by a force acting over a displacement as a product
of one component acting parallel to the other component. From the properties of vectors, it doesn’t matter if you take the
component of the force parallel to the displacement or the component of the displacement parallel to the force—you get the
same result either way.

Recall that the magnitude of a force times the cosine of the angle the force makes with a given direction is the component
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of the force in the given direction. The components of a vector can be positive, negative, or zero, depending on whether
the angle between the vector and the component-direction is between 0° and 90° or 90° and 180° , or is equal to 90° .

As a result, the work done by a force can be positive, negative, or zero, depending on whether the force is generally in the
direction of the displacement, generally opposite to the displacement, or perpendicular to the displacement. The maximum
work is done by a given force when it is along the direction of the displacement ( cos θ = ± 1 ), and zero work is done

when the force is perpendicular to the displacement ( cos θ = 0 ).

The units of work are units of force multiplied by units of length, which in the SI system is newtons times meters, N · m.
This combination is called a joule, for historical reasons that we will mention later, and is abbreviated as J. In the English
system, still used in the United States, the unit of force is the pound (lb) and the unit of distance is the foot (ft), so the unit
of work is the foot-pound (ft · lb).

Work Done by Constant Forces and Contact Forces
The simplest work to evaluate is that done by a force that is constant in magnitude and direction. In this case, we can factor
out the force; the remaining integral is just the total displacement, which only depends on the end points A and B, but not
on the path between them:

WAB = F→ · ∫
A

B
d r→ = F→ · ⎛

⎝ r→ B − r→ A
⎞
⎠ = | F→ || r→ B − r→ A|cos θ (constant force).

We can also see this by writing out Equation 7.2 in Cartesian coordinates and using the fact that the components of the
force are constant:

WAB = ∫
path AB

F→ · d r→ = ∫
path AB

⎛
⎝Fx dx + Fydy + Fzdz⎞

⎠ = Fx∫
A

B
dx + Fy∫

A

B
dy + Fz∫

A

B
dz

= Fx (xB − xA) + Fy (yB − yA) + Fz (zB − zA) = F→ · ( r→ B − r→ A).

Figure 7.3(a) shows a person exerting a constant force F→ along the handle of a lawn mower, which makes an angle θ

with the horizontal. The horizontal displacement of the lawn mower, over which the force acts, is d→ . The work done on

the lawn mower is W = F→ · d→ = Fd cos θ , which the figure also illustrates as the horizontal component of the force

times the magnitude of the displacement.
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Figure 7.3 Work done by a constant force. (a) A person pushes a lawn
mower with a constant force. The component of the force parallel to the
displacement is the work done, as shown in the equation in the figure. (b) A
person holds a briefcase. No work is done because the displacement is zero. (c)
The person in (b) walks horizontally while holding the briefcase. No work is
done because cos θ is zero.

Figure 7.3(b) shows a person holding a briefcase. The person must exert an upward force, equal in magnitude to the weight
of the briefcase, but this force does no work, because the displacement over which it acts is zero. So why do you eventually
feel tired just holding the briefcase, if you’re not doing any work on it? The answer is that muscle fibers in your arm are
contracting and doing work inside your arm, even though the force your muscles exert externally on the briefcase doesn’t do
any work on it. (Part of the force you exert could also be tension in the bones and ligaments of your arm, but other muscles
in your body would be doing work to maintain the position of your arm.)

In Figure 7.3(c), where the person in (b) is walking horizontally with constant speed, the work done by the person on the

briefcase is still zero, but now because the angle between the force exerted and the displacement is 90° ( F→ perpendicular

to d→ ) and cos 90° = 0 .

Example 7.1

Calculating the Work You Do to Push a Lawn Mower

How much work is done on the lawn mower by the person in Figure 7.3(a) if he exerts a constant force of 75.0
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N at an angle 35° below the horizontal and pushes the mower 25.0 m on level ground?

Strategy

We can solve this problem by substituting the given values into the definition of work done on an object by a
constant force, stated in the equation W = Fd cos θ . The force, angle, and displacement are given, so that only

the work W is unknown.

Solution

The equation for the work is

W = Fd cos θ.

Substituting the known values gives

W = (75.0 N)(25.0 m)cos(35.0°) = 1.54 × 103 J.

Significance

Even though one and a half kilojoules may seem like a lot of work, we will see in Potential Energy and
Conservation of Energy that it’s only about as much work as you could do by burning one sixth of a gram of
fat.

When you mow the grass, other forces act on the lawn mower besides the force you exert—namely, the contact force of the
ground and the gravitational force of Earth. Let’s consider the work done by these forces in general. For an object moving on

a surface, the displacement d r→ is tangent to the surface. The part of the contact force on the object that is perpendicular

to the surface is the normal force N→ . Since the cosine of the angle between the normal and the tangent to a surface is

zero, we have

dWN = N→ · d r→ = 0
→

.

The normal force never does work under these circumstances. (Note that if the displacement d r→ did have a relative

component perpendicular to the surface, the object would either leave the surface or break through it, and there would no
longer be any normal contact force. However, if the object is more than a particle, and has an internal structure, the normal
contact force can do work on it, for example, by displacing it or deforming its shape. This will be mentioned in the next
chapter.)

The part of the contact force on the object that is parallel to the surface is friction, f
→

. For this object sliding along the

surface, kinetic friction f
→

k is opposite to d r→ , relative to the surface, so the work done by kinetic friction is negative.

If the magnitude of f
→

k is constant (as it would be if all the other forces on the object were constant), then the work done

by friction is

(7.3)
Wfr = ∫

A

B
f

→
k · d r→ = − fk∫

A

B
|dr| = − fk |lAB|,

where |lAB| is the path length on the surface. (Note that, especially if the work done by a force is negative, people may refer

to the work done against this force, where dWagainst = −dWby . The work done against a force may also be viewed as

the work required to overcome this force, as in “How much work is required to overcome…?”) The force of static friction,
however, can do positive or negative work. When you walk, the force of static friction exerted by the ground on your back
foot accelerates you for part of each step. If you’re slowing down, the force of the ground on your front foot decelerates
you. If you’re driving your car at the speed limit on a straight, level stretch of highway, the negative work done by kinetic
friction of air resistance is balanced by the positive work done by the static friction of the road on the drive wheels. You
can pull the rug out from under an object in such a way that it slides backward relative to the rug, but forward relative to
the floor. In this case, kinetic friction exerted by the rug on the object could be in the same direction as the displacement
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7.1

of the object, relative to the floor, and do positive work. The bottom line is that you need to analyze each particular case to
determine the work done by the forces, whether positive, negative or zero.

Example 7.2

Moving a Couch

You decide to move your couch to a new position on your horizontal living room floor. The normal force on the
couch is 1 kN and the coefficient of friction is 0.6. (a) You first push the couch 3 m parallel to a wall and then 1 m
perpendicular to the wall (A to B in Figure 7.4). How much work is done by the frictional force? (b) You don’t
like the new position, so you move the couch straight back to its original position (B to A in Figure 7.4). What
was the total work done against friction moving the couch away from its original position and back again?

Figure 7.4 Top view of paths for moving a couch.

Strategy

The magnitude of the force of kinetic friction on the couch is constant, equal to the coefficient of friction times the
normal force, fK = µK N . Therefore, the work done by it is Wfr = − fK d , where d is the path length traversed.

The segments of the paths are the sides of a right triangle, so the path lengths are easily calculated. In part (b),
you can use the fact that the work done against a force is the negative of the work done by the force.

Solution
a. The work done by friction is

W = − (0.6)(1 kN)(3 m + 1 m) = − 2.4 kJ.
b. The length of the path along the hypotenuse is 10 m , so the total work done against friction is

W = (0.6)(1 kN)(3 m + 1 m + 10 m) = 4.3 kJ.

Significance

The total path over which the work of friction was evaluated began and ended at the same point (it was a closed
path), so that the total displacement of the couch was zero. However, the total work was not zero. The reason is
that forces like friction are classified as nonconservative forces, or dissipative forces, as we discuss in the next
chapter.

Check Your Understanding Can kinetic friction ever be a constant force for all paths?

The other force on the lawn mower mentioned above was Earth’s gravitational force, or the weight of the mower. Near
the surface of Earth, the gravitational force on an object of mass m has a constant magnitude, mg, and constant direction,
vertically down. Therefore, the work done by gravity on an object is the dot product of its weight and its displacement. In
many cases, it is convenient to express the dot product for gravitational work in terms of the x-, y-, and z-components of the
vectors. A typical coordinate system has the x-axis horizontal and the y-axis vertically up. Then the gravitational force is

−mg j
^

, so the work done by gravity, over any path from A to B, is

(7.4)Wgrav, AB = −mg j
^

· ( r→ B − r→ A) = −mg(yB − yA).
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7.2

The work done by a constant force of gravity on an object depends only on the object’s weight and the difference in height
through which the object is displaced. Gravity does negative work on an object that moves upward ( yB > yA ), or, in other

words, you must do positive work against gravity to lift an object upward. Alternately, gravity does positive work on an
object that moves downward ( yB < yA ), or you do negative work against gravity to “lift” an object downward, controlling

its descent so it doesn’t drop to the ground. (“Lift” is used as opposed to “drop”.)

Example 7.3

Shelving a Book

You lift an oversized library book, weighing 20 N, 1 m vertically down from a shelf, and carry it 3 m horizontally
to a table (Figure 7.5). How much work does gravity do on the book? (b) When you’re finished, you move the
book in a straight line back to its original place on the shelf. What was the total work done against gravity, moving
the book away from its original position on the shelf and back again?

Figure 7.5 Side view of the paths for moving a book to and
from a shelf.

Strategy

We have just seen that the work done by a constant force of gravity depends only on the weight of the object
moved and the difference in height for the path taken, WAB = −mg(yB − yA) . We can evaluate the difference in

height to answer (a) and (b).

Solution
a. Since the book starts on the shelf and is lifted down yB − yA = −1 m , we have

W = −(20 N)( − 1 m) = 20 J.
b. There is zero difference in height for any path that begins and ends at the same place on the shelf, so

W = 0.

Significance

Gravity does positive work (20 J) when the book moves down from the shelf. The gravitational force between
two objects is an attractive force, which does positive work when the objects get closer together. Gravity does
zero work (0 J) when the book moves horizontally from the shelf to the table and negative work (−20 J) when the
book moves from the table back to the shelf. The total work done by gravity is zero [20 J + 0 J + (−20 J) = 0].
Unlike friction or other dissipative forces, described in Example 7.2, the total work done against gravity, over
any closed path, is zero. Positive work is done against gravity on the upward parts of a closed path, but an equal
amount of negative work is done against gravity on the downward parts. In other words, work done against
gravity, lifting an object up, is “given back” when the object comes back down. Forces like gravity (those that do
zero work over any closed path) are classified as conservative forces and play an important role in physics.

Check Your Understanding Can Earth’s gravity ever be a constant force for all paths?
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Work Done by Forces that Vary
In general, forces may vary in magnitude and direction at points in space, and paths between two points may be curved. The
infinitesimal work done by a variable force can be expressed in terms of the components of the force and the displacement
along the path,

dW = Fx dx + Fydy + Fzdz.

Here, the components of the force are functions of position along the path, and the displacements depend on the equations
of the path. (Although we chose to illustrate dW in Cartesian coordinates, other coordinates are better suited to some
situations.) Equation 7.2 defines the total work as a line integral, or the limit of a sum of infinitesimal amounts of work.
The physical concept of work is straightforward: you calculate the work for tiny displacements and add them up. Sometimes
the mathematics can seem complicated, but the following example demonstrates how cleanly they can operate.

Example 7.4

Work Done by a Variable Force over a Curved Path

An object moves along a parabolic path y = (0.5 m−1)x2 from the origin A = (0, 0) to the point

B = (2 m, 2 m) under the action of a force F→ = (5 N/m)y i
^

+ (10 N/m)x j
^

(Figure 7.6). Calculate the

work done.

Figure 7.6 The parabolic path of a particle acted on by a
given force.

Strategy

The components of the force are given functions of x and y. We can use the equation of the path to express y and
dy in terms of x and dx; namely,

y = (0.5 m−1)x2 and dy = 2(0.5 m−1)xdx.

Then, the integral for the work is just a definite integral of a function of x.

Solution

The infinitesimal element of work is

dW = Fx dx + Fydy = (5 N/m)ydx + (10 N/m)xdy

= (5 N/m)(0.5 m−1)x2dx + (10 N/m)2(0.5 m−1)x2dx = (12.5 N/m2)x2dx.

The integral of x2 is x3 /3, so

W = ∫
0

2 m
(12.5 N/m2)x2dx = (12.5 N/m2)x

3

3 |02 m
= (12.5 N/m2)⎛⎝

8
3

⎞
⎠ = 33.3 J.

Significance

This integral was not hard to do. You can follow the same steps, as in this example, to calculate line integrals
representing work for more complicated forces and paths. In this example, everything was given in terms of x-
and y-components, which are easiest to use in evaluating the work in this case. In other situations, magnitudes
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7.3

and angles might be easier.

Check Your Understanding Find the work done by the same force in Example 7.4 over a cubic path,

y = (0.25 m−2)x3 , between the same points A = (0, 0) and B = (2 m, 2 m).

You saw in Example 7.4 that to evaluate a line integral, you could reduce it to an integral over a single variable or
parameter. Usually, there are several ways to do this, which may be more or less convenient, depending on the particular
case. In Example 7.4, we reduced the line integral to an integral over x, but we could equally well have chosen to reduce
everything to a function of y. We didn’t do that because the functions in y involve the square root and fractional exponents,
which may be less familiar, but for illustrative purposes, we do this now. Solving for x and dx, in terms of y, along the
parabolic path, we get

x = y/(0.5 m−1) = (2 m)y and dx = (2 m) × 1
2dy/ y = dy/ (2 m−1)y.

The components of the force, in terms of y, are

Fx = (5 N/m)y and Fy = (10 N/m)x = (10 N/m) (2 m)y,

so the infinitesimal work element becomes

dW = Fx dx + Fydy = (5 N/m)y dy
(2 m−1)y

+ (10 N/m) (2 m)y dy

= (5 N · m−1/2)⎛⎝
1
2

+ 2 2⎞
⎠ y dy = (17.7 N · m−1/2)y1/2dy.

The integral of y1/2 is 2
3y

3/2 , so the work done from A to B is

W = ∫
0

2 m
(17.7 N · m−1/2)y1/2dy = (17.7 N · m−1/2)2

3(2 m)3/2 = 33.3 J.

As expected, this is exactly the same result as before.

One very important and widely applicable variable force is the force exerted by a perfectly elastic spring, which satisfies

Hooke’s law F→ = −kΔ x→ , where k is the spring constant, and Δ x→ = x→ − x→ eq is the displacement from the

spring’s unstretched (equilibrium) position (Newton’s Laws of Motion). Note that the unstretched position is only the
same as the equilibrium position if no other forces are acting (or, if they are, they cancel one another). Forces between
molecules, or in any system undergoing small displacements from a stable equilibrium, behave approximately like a spring
force.

To calculate the work done by a spring force, we can choose the x-axis along the length of the spring, in the direction of
increasing length, as in Figure 7.7, with the origin at the equilibrium position xeq = 0. (Then positive x corresponds

to a stretch and negative x to a compression.) With this choice of coordinates, the spring force has only an x-component,
Fx = −kx , and the work done when x changes from xA to xB is

(7.5)
Wspring, AB = ∫

A

B
Fx dx = − k∫

A

B
xdx = −kx

2

2 |AB = − 1
2k

⎛
⎝xB

2 − xA
2 ⎞

⎠.
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Figure 7.7 (a) The spring exerts no force at its equilibrium
position. The spring exerts a force in the opposite direction to
(b) an extension or stretch, and (c) a compression.

Notice that WAB depends only on the starting and ending points, A and B, and is independent of the actual path between

them, as long as it starts at A and ends at B. That is, the actual path could involve going back and forth before ending.

Another interesting thing to notice about Equation 7.5 is that, for this one-dimensional case, you can readily see the
correspondence between the work done by a force and the area under the curve of the force versus its displacement. Recall
that, in general, a one-dimensional integral is the limit of the sum of infinitesimals, f (x)dx , representing the area of strips,

as shown in Figure 7.8. In Equation 7.5, since F = −kx is a straight line with slope −k , when plotted versus x, the

“area” under the line is just an algebraic combination of triangular “areas,” where “areas” above the x-axis are positive and
those below are negative, as shown in Figure 7.9. The magnitude of one of these “areas” is just one-half the triangle’s
base, along the x-axis, times the triangle’s height, along the force axis. (There are quotation marks around “area” because
this base-height product has the units of work, rather than square meters.)

Figure 7.8 A curve of f(x) versus x showing the area of an
infinitesimal strip, f(x)dx, and the sum of such areas, which is
the integral of f(x) from x1 to x2 .
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7.4

Figure 7.9 Curve of the spring force f (x) = −kx versus x,

showing areas under the line, between xA and xB , for both

positive and negative values of xA . When xA is negative, the

total area under the curve for the integral in Equation 7.5 is the
sum of positive and negative triangular areas. When xA is

positive, the total area under the curve is the difference between
two negative triangles.

Example 7.5

Work Done by a Spring Force

A perfectly elastic spring requires 0.54 J of work to stretch 6 cm from its equilibrium position, as in Figure
7.7(b). (a) What is its spring constant k? (b) How much work is required to stretch it an additional 6 cm?

Strategy

Work “required” means work done against the spring force, which is the negative of the work in Equation 7.5,
that is

W = 1
2k(xB

2 − xA
2 ).

For part (a), xA = 0 and xB = 6cm ; for part (b), xB = 6cm and xB = 12cm . In part (a), the work is given

and you can solve for the spring constant; in part (b), you can use the value of k, from part (a), to solve for the
work.

Solution

a. W = 0.54 J = 1
2k[(6 cm)2 − 0] , so k = 3 N/cm.

b. W = 1
2(3 N/cm)[(12 cm)2 − (6 cm)2] = 1.62 J.

Significance

Since the work done by a spring force is independent of the path, you only needed to calculate the difference in

the quantity ½kx2 at the end points. Notice that the work required to stretch the spring from 0 to 12 cm is four

times that required to stretch it from 0 to 6 cm, because that work depends on the square of the amount of stretch

from equilibrium, ½kx2 . In this circumstance, the work to stretch the spring from 0 to 12 cm is also equal to

the work for a composite path from 0 to 6 cm followed by an additional stretch from 6 cm to 12 cm. Therefore,
4W(0 cm to 6 cm) = W(0 cm to 6 cm) + W(6 cm to 12 cm) , or W(6 cm to 12 cm) = 3W(0 cm to 6 cm) , as

we found above.

Check Your Understanding The spring in Example 7.5 is compressed 6 cm from its equilibrium
length. (a) Does the spring force do positive or negative work and (b) what is the magnitude?
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7.2 | Kinetic Energy

Learning Objectives

By the end of this section, you will be able to:

• Calculate the kinetic energy of a particle given its mass and its velocity or momentum

• Evaluate the kinetic energy of a body, relative to different frames of reference

It’s plausible to suppose that the greater the velocity of a body, the greater effect it could have on other bodies. This does not
depend on the direction of the velocity, only its magnitude. At the end of the seventeenth century, a quantity was introduced
into mechanics to explain collisions between two perfectly elastic bodies, in which one body makes a head-on collision with
an identical body at rest. The first body stops, and the second body moves off with the initial velocity of the first body. (If
you have ever played billiards or croquet, or seen a model of Newton’s Cradle, you have observed this type of collision.)
The idea behind this quantity was related to the forces acting on a body and was referred to as “the energy of motion.” Later
on, during the eighteenth century, the name kinetic energy was given to energy of motion.

With this history in mind, we can now state the classical definition of kinetic energy. Note that when we say “classical,”
we mean non-relativistic, that is, at speeds much less that the speed of light. At speeds comparable to the speed of light,
the special theory of relativity requires a different expression for the kinetic energy of a particle, as discussed in Relativity
(http://cnx.org/content/m58555/latest/) .

Since objects (or systems) of interest vary in complexity, we first define the kinetic energy of a particle with mass m.

Kinetic Energy

The kinetic energy of a particle is one-half the product of the particle’s mass m and the square of its speed v:

(7.6)K = 1
2mv

2.

We then extend this definition to any system of particles by adding up the kinetic energies of all the constituent particles:

(7.7)K = ∑ 1
2mv

2.

Note that just as we can express Newton’s second law in terms of either the rate of change of momentum or mass times
the rate of change of velocity, so the kinetic energy of a particle can be expressed in terms of its mass and momentum

( p→ = m v→ ), instead of its mass and velocity. Since v = p/m , we see that

K = 1
2m

⎛
⎝
p
m

⎞
⎠
2

= p2

2m

also expresses the kinetic energy of a single particle. Sometimes, this expression is more convenient to use than Equation
7.6.

The units of kinetic energy are mass times the square of speed, or kg · m2 /s2 . But the units of force are mass times

acceleration, kg · m/s2 , so the units of kinetic energy are also the units of force times distance, which are the units of work,

or joules. You will see in the next section that work and kinetic energy have the same units, because they are different forms
of the same, more general, physical property.

Example 7.6

Kinetic Energy of an Object

(a) What is the kinetic energy of an 80-kg athlete, running at 10 m/s? (b) The Chicxulub crater in Yucatan, one of
the largest existing impact craters on Earth, is thought to have been created by an asteroid, traveling at

22 km/s and releasing 4.2 × 1023 J of kinetic energy upon impact. What was its mass? (c) In nuclear reactors,
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7.5

thermal neutrons, traveling at about 2.2 km/s, play an important role. What is the kinetic energy of such a particle?

Strategy

To answer these questions, you can use the definition of kinetic energy in Equation 7.6. You also have to look
up the mass of a neutron.

Solution

Don’t forget to convert km into m to do these calculations, although, to save space, we omitted showing these
conversions.

a. K = 1
2(80 kg)(10 m/s)2 = 4.0 kJ.

b. m = 2K/v2 = 2(4.2 × 1023 J)/(22 km/s)2 = 1.7 × 1015 kg.

c. K = 1
2(1.68 × 10−27 kg)(2.2 km/s)2 = 4.1 × 10−21 J.

Significance

In this example, we used the way mass and speed are related to kinetic energy, and we encountered a very
wide range of values for the kinetic energies. Different units are commonly used for such very large and
very small values. The energy of the impactor in part (b) can be compared to the explosive yield of TNT

and nuclear explosions, 1 megaton = 4.18 × 1015 J. The Chicxulub asteroid’s kinetic energy was about a

hundred million megatons. At the other extreme, the energy of subatomic particle is expressed in electron-volts,

1 eV = 1.6 × 10−19 J. The thermal neutron in part (c) has a kinetic energy of about one fortieth of an electron-

volt.

Check Your Understanding (a) A car and a truck are each moving with the same kinetic energy. Assume
that the truck has more mass than the car. Which has the greater speed? (b) A car and a truck are each moving
with the same speed. Which has the greater kinetic energy?

Because velocity is a relative quantity, you can see that the value of kinetic energy must depend on your frame of reference.
You can generally choose a frame of reference that is suited to the purpose of your analysis and that simplifies your
calculations. One such frame of reference is the one in which the observations of the system are made (likely an external
frame). Another choice is a frame that is attached to, or moves with, the system (likely an internal frame). The equations for
relative motion, discussed in Motion in Two and Three Dimensions, provide a link to calculating the kinetic energy of
an object with respect to different frames of reference.

Example 7.7

Kinetic Energy Relative to Different Frames

A 75.0-kg person walks down the central aisle of a subway car at a speed of 1.50 m/s relative to the car, whereas
the train is moving at 15.0 m/s relative to the tracks. (a) What is the person’s kinetic energy relative to the car?
(b) What is the person’s kinetic energy relative to the tracks? (c) What is the person’s kinetic energy relative to a
frame moving with the person?

Strategy

Since speeds are given, we can use 1
2mv

2 to calculate the person’s kinetic energy. However, in part (a), the

person’s speed is relative to the subway car (as given); in part (b), it is relative to the tracks; and in part (c), it is
zero. If we denote the car frame by C, the track frame by T, and the person by P, the relative velocities in part (b)

are related by v→ PT = v→ PC + v→ CT. We can assume that the central aisle and the tracks lie along the same

line, but the direction the person is walking relative to the car isn’t specified, so we will give an answer for each
possibility, vPT = vCT ± vPC , as shown in Figure 7.10.
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Figure 7.10 The possible motions of a person walking in a train are (a) toward the front of the car and (b) toward
the back of the car.

Solution

a. K = 1
2(75.0 kg)(1.50 m/s)2 = 84.4 J.

b. vPT = (15.0 ± 1.50) m/s. Therefore, the two possible values for kinetic energy relative to the car are

K = 1
2(75.0 kg)(13.5 m/s)2 = 6.83 kJ

and

K = 1
2(75.0 kg)(16.5 m/s)2 = 10.2 kJ.

c. In a frame where vP = 0, K = 0 as well.

Significance

You can see that the kinetic energy of an object can have very different values, depending on the frame of
reference. However, the kinetic energy of an object can never be negative, since it is the product of the mass and
the square of the speed, both of which are always positive or zero.

Check Your Understanding You are rowing a boat parallel to the banks of a river. Your kinetic energy
relative to the banks is less than your kinetic energy relative to the water. Are you rowing with or against the
current?

The kinetic energy of a particle is a single quantity, but the kinetic energy of a system of particles can sometimes be divided
into various types, depending on the system and its motion. For example, if all the particles in a system have the same
velocity, the system is undergoing translational motion and has translational kinetic energy. If an object is rotating, it could
have rotational kinetic energy, or if it’s vibrating, it could have vibrational kinetic energy. The kinetic energy of a system,
relative to an internal frame of reference, may be called internal kinetic energy. The kinetic energy associated with random
molecular motion may be called thermal energy. These names will be used in later chapters of the book, when appropriate.
Regardless of the name, every kind of kinetic energy is the same physical quantity, representing energy associated with
motion.

Example 7.8

Special Names for Kinetic Energy

(a) A player lobs a mid-court pass with a 624-g basketball, which covers 15 m in 2 s. What is the basketball’s
horizontal translational kinetic energy while in flight? (b) An average molecule of air, in the basketball in part

(a), has a mass of 29 u, and an average speed of 500 m/s, relative to the basketball. There are about 3 × 1023

molecules inside it, moving in random directions, when the ball is properly inflated. What is the average
translational kinetic energy of the random motion of all the molecules inside, relative to the basketball? (c) How
fast would the basketball have to travel relative to the court, as in part (a), so as to have a kinetic energy equal to
the amount in part (b)?
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Strategy

In part (a), first find the horizontal speed of the basketball and then use the definition of kinetic energy in terms of

mass and speed, K = 1
2mv

2 . Then in part (b), convert unified units to kilograms and then use K = 1
2mv

2 to get

the average translational kinetic energy of one molecule, relative to the basketball. Then multiply by the number
of molecules to get the total result. Finally, in part (c), we can substitute the amount of kinetic energy in part (b),

and the mass of the basketball in part (a), into the definition K = 1
2mv

2 , and solve for v.

Solution
a. The horizontal speed is (15 m)/(2 s), so the horizontal kinetic energy of the basketball is

1
2(0.624 kg)(7.5 m/s)2 = 17.6 J.

b. The average translational kinetic energy of a molecule is

1
2(29 u)(1.66 × 10−27 kg/u)(500 m/s)2 = 6.02 × 10−21 J,

and the total kinetic energy of all the molecules is

(3 × 1023)(6.02 × 10−21 J) = 1.80 kJ.

c. v = 2(1.8 kJ)/(0.624 kg) = 76.0 m/s.

Significance

In part (a), this kind of kinetic energy can be called the horizontal kinetic energy of an object (the basketball),
relative to its surroundings (the court). If the basketball were spinning, all parts of it would have not just the
average speed, but it would also have rotational kinetic energy. Part (b) reminds us that this kind of kinetic energy
can be called internal or thermal kinetic energy. Notice that this energy is about a hundred times the energy in part
(a). How to make use of thermal energy will be the subject of the chapters on thermodynamics. In part (c), since
the energy in part (b) is about 100 times that in part (a), the speed should be about 10 times as big, which it is (76
compared to 7.5 m/s).

7.3 | Work-Energy Theorem

Learning Objectives

By the end of this section, you will be able to:

• Apply the work-energy theorem to find information about the motion of a particle, given the
forces acting on it

• Use the work-energy theorem to find information about the forces acting on a particle, given
information about its motion

We have discussed how to find the work done on a particle by the forces that act on it, but how is that work manifested in
the motion of the particle? According to Newton’s second law of motion, the sum of all the forces acting on a particle, or
the net force, determines the rate of change in the momentum of the particle, or its motion. Therefore, we should consider
the work done by all the forces acting on a particle, or the net work, to see what effect it has on the particle’s motion.

Let’s start by looking at the net work done on a particle as it moves over an infinitesimal displacement, which is

the dot product of the net force and the displacement: dWnet = F→ net · d r→ . Newton’s second law tells us that

F→ net = m(d v→ /dt), , so dWnet = m(d v→ /dt) · d r→ . For the mathematical functions describing the motion of a

physical particle, we can rearrange the differentials dt, etc., as algebraic quantities in this expression, that is,

dWnet = m⎛
⎝
d v→
dt

⎞
⎠ · d r→ = md v→ · ⎛

⎝
d r→
dt

⎞
⎠ = m v→ · d v→ ,
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where we substituted the velocity for the time derivative of the displacement and used the commutative property of the
dot product [Equation 2.30]. Since derivatives and integrals of scalars are probably more familiar to you at this point,
we express the dot product in terms of Cartesian coordinates before we integrate between any two points A and B on the
particle’s trajectory. This gives us the net work done on the particle:

(7.8)
Wnet, AB = ∫

A

B
(mvx dvx + mvydvy + mvzdvz)

= 1
2m|vx2 + vy2 + vz2|AB = |12mv2|AB = KB − KA.

In the middle step, we used the fact that the square of the velocity is the sum of the squares of its Cartesian components,
and in the last step, we used the definition of the particle’s kinetic energy. This important result is called the work-energy
theorem (Figure 7.11).

Work-Energy Theorem

The net work done on a particle equals the change in the particle’s kinetic energy:

(7.9)Wnet = KB − KA.

Figure 7.11 Horse pulls are common events at state fairs. The work done by
the horses pulling on the load results in a change in kinetic energy of the load,
ultimately going faster. (credit: “Jassen”/ Flickr)

According to this theorem, when an object slows down, its final kinetic energy is less than its initial kinetic energy, the
change in its kinetic energy is negative, and so is the net work done on it. If an object speeds up, the net work done on it is
positive. When calculating the net work, you must include all the forces that act on an object. If you leave out any forces
that act on an object, or if you include any forces that don’t act on it, you will get a wrong result.

The importance of the work-energy theorem, and the further generalizations to which it leads, is that it makes some types
of calculations much simpler to accomplish than they would be by trying to solve Newton’s second law. For example, in
Newton’s Laws of Motion, we found the speed of an object sliding down a frictionless plane by solving Newton’s second
law for the acceleration and using kinematic equations for constant acceleration, obtaining

vf
2 = vi

2 + 2g(sf − si)sin θ,

where s is the displacement down the plane.

We can also get this result from the work-energy theorem. Since only two forces are acting on the object—gravity and the
normal force—and the normal force doesn’t do any work, the net work is just the work done by gravity. This only depends
on the object’s weight and the difference in height, so
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Wnet = Wgrav = −mg(yf − yi),

where y is positive up. The work-energy theorem says that this equals the change in kinetic energy:

−mg(yf − yi) = 1
2m(vf

2 − vi
2).

Using a right triangle, we can see that (yf − yi) = (sf − si)sin θ, so the result for the final speed is the same.

What is gained by using the work-energy theorem? The answer is that for a frictionless plane surface, not much. However,
Newton’s second law is easy to solve only for this particular case, whereas the work-energy theorem gives the final speed
for any shaped frictionless surface. For an arbitrary curved surface, the normal force is not constant, and Newton’s second
law may be difficult or impossible to solve analytically. Constant or not, for motion along a surface, the normal force never
does any work, because it’s perpendicular to the displacement. A calculation using the work-energy theorem avoids this
difficulty and applies to more general situations.

Problem-Solving Strategy: Work-Energy Theorem

1. Draw a free-body diagram for each force on the object.

2. Determine whether or not each force does work over the displacement in the diagram. Be sure to keep any
positive or negative signs in the work done.

3. Add up the total amount of work done by each force.

4. Set this total work equal to the change in kinetic energy and solve for any unknown parameter.

5. Check your answers. If the object is traveling at a constant speed or zero acceleration, the total work done
should be zero and match the change in kinetic energy. If the total work is positive, the object must have sped
up or increased kinetic energy. If the total work is negative, the object must have slowed down or decreased
kinetic energy.

Example 7.9

Loop-the-Loop

The frictionless track for a toy car includes a loop-the-loop of radius R. How high, measured from the bottom of
the loop, must the car be placed to start from rest on the approaching section of track and go all the way around
the loop?

Figure 7.12 A frictionless track for a toy car has a loop-the-
loop in it. How high must the car start so that it can go around
the loop without falling off?

Strategy

The free-body diagram at the final position of the object is drawn in Figure 7.12. The gravitational work is the
only work done over the displacement that is not zero. Since the weight points in the same direction as the net
vertical displacement, the total work done by the gravitational force is positive. From the work-energy theorem,
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the starting height determines the speed of the car at the top of the loop,

mg(y2 − y1) = 1
2mv2

2,

where the notation is shown in the accompanying figure. At the top of the loop, the normal force and gravity are
both down and the acceleration is centripetal, so

atop = F
m = N + mg

m =
v2

2

R .

The condition for maintaining contact with the track is that there must be some normal force, however slight; that

is, N > 0 . Substituting for v2
2 and N, we can find the condition for y1 .

Solution

Implement the steps in the strategy to arrive at the desired result:

N =
−mg + mv2

2

R = −mg + 2mg(y1 − 2R)
R > 0 or y1 > 5R

2 .

Significance

On the surface of the loop, the normal component of gravity and the normal contact force must provide the
centripetal acceleration of the car going around the loop. The tangential component of gravity slows down or
speeds up the car. A child would find out how high to start the car by trial and error, but now that you know the
work-energy theorem, you can predict the minimum height (as well as other more useful results) from physical
principles. By using the work-energy theorem, you did not have to solve a differential equation to determine the
height.

Check Your Understanding Suppose the radius of the loop-the-loop in Example 7.9 is 15 cm and the
toy car starts from rest at a height of 45 cm above the bottom. What is its speed at the top of the loop?

Visit Carleton College’s site to see a video (https://openstaxcollege.org/l/21carcollvidrol) of a looping
rollercoaster.

In situations where the motion of an object is known, but the values of one or more of the forces acting on it are not known,
you may be able to use the work-energy theorem to get some information about the forces. Work depends on the force and
the distance over which it acts, so the information is provided via their product.

Example 7.10

Determining a Stopping Force

A bullet from a 0.22LR-caliber cartridge has a mass of 40 grains (2.60 g) and a muzzle velocity of 1100 ft./s (335
m/s). It can penetrate eight 1-inch pine boards, each with thickness 0.75 inches. What is the average stopping
force exerted by the wood, as shown in Figure 7.13?
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Figure 7.13 The boards exert a force to stop the bullet. As a result, the boards do work and the
bullet loses kinetic energy.

Strategy

We can assume that under the general conditions stated, the bullet loses all its kinetic energy penetrating the
boards, so the work-energy theorem says its initial kinetic energy is equal to the average stopping force times
the distance penetrated. The change in the bullet’s kinetic energy and the net work done stopping it are both
negative, so when you write out the work-energy theorem, with the net work equal to the average force times the
stopping distance, that’s what you get. The total thickness of eight 1-inch pine boards that the bullet penetrates is

8 × 3
4 in. = 6 in. = 15.2 cm.

Solution

Applying the work-energy theorem, we get

Wnet = −Fave Δsstop = −Kinitial,

so

Fave =
1
2mv

2

Δsstop
=

1
2(2.6 × 10−3 kg)(335 m/s)2

0.152 m = 960 N.

Significance

We could have used Newton’s second law and kinematics in this example, but the work-energy theorem also
supplies an answer to less simple situations. The penetration of a bullet, fired vertically upward into a block
of wood, is discussed in one section of Asif Shakur’s recent article [“Bullet-Block Science Video Puzzle.” The
Physics Teacher (January 2015) 53(1): 15-16]. If the bullet is fired dead center into the block, it loses all its kinetic
energy and penetrates slightly farther than if fired off-center. The reason is that if the bullet hits off-center, it has
a little kinetic energy after it stops penetrating, because the block rotates. The work-energy theorem implies that a
smaller change in kinetic energy results in a smaller penetration. You will understand more of the physics in this
interesting article after you finish reading Angular Momentum.

Learn more about work and energy in this PhET simulation (https://openstaxcollege.org/l/
21PhETSimRamp) called “the ramp.” Try changing the force pushing the box and the frictional force along the
incline. The work and energy plots can be examined to note the total work done and change in kinetic energy of
the box.

7.4 | Power

Learning Objectives

By the end of this section, you will be able to:

• Relate the work done during a time interval to the power delivered

• Find the power expended by a force acting on a moving body
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The concept of work involves force and displacement; the work-energy theorem relates the net work done on a body to the
difference in its kinetic energy, calculated between two points on its trajectory. None of these quantities or relations involves
time explicitly, yet we know that the time available to accomplish a particular amount of work is frequently just as important
to us as the amount itself. In the chapter-opening figure, several sprinters may have achieved the same velocity at the finish,
and therefore did the same amount of work, but the winner of the race did it in the least amount of time.

We express the relation between work done and the time interval involved in doing it, by introducing the concept of power.
Since work can vary as a function of time, we first define average power as the work done during a time interval, divided
by the interval,

(7.10)Pave = ΔW
Δt .

Then, we can define the instantaneous power (frequently referred to as just plain power).

Power

Power is defined as the rate of doing work, or the limit of the average power for time intervals approaching zero,

(7.11)P = dW
dt .

If the power is constant over a time interval, the average power for that interval equals the instantaneous power, and the
work done by the agent supplying the power is W = PΔt . If the power during an interval varies with time, then the work

done is the time integral of the power,

W = ∫ Pdt.

The work-energy theorem relates how work can be transformed into kinetic energy. Since there are other forms of energy
as well, as we discuss in the next chapter, we can also define power as the rate of transfer of energy. Work and energy
are measured in units of joules, so power is measured in units of joules per second, which has been given the SI name
watts, abbreviation W: 1 J/s = 1 W . Another common unit for expressing the power capability of everyday devices is

horsepower: 1 hp = 746 W .

Example 7.11

Pull-Up Power

An 80-kg army trainee does 10 pull-ups in 10 s (Figure 7.14). How much average power do the trainee’s muscles
supply moving his body? (Hint: Make reasonable estimates for any quantities needed.)

Figure 7.14 What is the power expended in doing ten pull-ups
in ten seconds?

346 Chapter 7 | Work and Kinetic Energy

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



7.8

Strategy

The work done against gravity, going up or down a distance Δy , is mgΔy. (If you lift and lower yourself at

constant speed, the force you exert cancels gravity over the whole pull-up cycle.) Thus, the work done by the
trainee’s muscles (moving, but not accelerating, his body) for a complete repetition (up and down) is 2mgΔy.
Let’s assume that Δy = 2ft ≈ 60 cm. Also, assume that the arms comprise 10% of the body mass and are not

included in the moving mass. With these assumptions, we can calculate the work done for 10 pull-ups and divide
by 10 s to get the average power.

Solution

The result we get, applying our assumptions, is

Pave = 10 × 2(0.9 × 80 kg)(9.8 m/s2)(0.6 m)
10 s = 850 W.

Significance

This is typical for power expenditure in strenuous exercise; in everyday units, it’s somewhat more than one
horsepower (1 hp = 746 W).

Check Your Understanding Estimate the power expended by a weightlifter raising a 150-kg barbell 2 m
in 3 s.

The power involved in moving a body can also be expressed in terms of the forces acting on it. If a force F→ acts on a

body that is displaced d r→ in a time dt, the power expended by the force is

(7.12)
P = dW

dt = F→ · d r→
dt = F→ · ⎛

⎝
d r→
dt

⎞
⎠ = F→ · v→ ,

where v→ is the velocity of the body. The fact that the limits implied by the derivatives exist, for the motion of a real body,

justifies the rearrangement of the infinitesimals.

Example 7.12

Automotive Power Driving Uphill

How much power must an automobile engine expend to move a 1200-kg car up a 15% grade at 90 km/h (Figure
7.15)? Assume that 25% of this power is dissipated overcoming air resistance and friction.

Figure 7.15 We want to calculate the power needed to move a car up a hill at
constant speed.
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Strategy

At constant velocity, there is no change in kinetic energy, so the net work done to move the car is zero. Therefore
the power supplied by the engine to move the car equals the power expended against gravity and air resistance.

By assumption, 75% of the power is supplied against gravity, which equals m g→ · v→ = mgv sin θ, where θ
is the angle of the incline. A 15% grade means tan θ = 0.15. This reasoning allows us to solve for the power

required.

Solution

Carrying out the suggested steps, we find

0.75 P = mgv sin(tan−1 0.15),

or

P = (1200 × 9.8 N)(90 m/3.6 s)sin(8.53°)
0.75 = 58 kW,

or about 78 hp. (You should supply the steps used to convert units.)

Significance

This is a reasonable amount of power for the engine of a small to mid-size car to supply (1 hp = 0.746 kW).
Note that this is only the power expended to move the car. Much of the engine’s power goes elsewhere, for
example, into waste heat. That’s why cars need radiators. Any remaining power could be used for acceleration, or
to operate the car’s accessories.
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average power

kinetic energy

net work

power

work

work done by a force

work-energy theorem

CHAPTER 7 REVIEW

KEY TERMS
work done in a time interval divided by the time interval

energy of motion, one-half an object’s mass times the square of its speed

work done by all the forces acting on an object

(or instantaneous power) rate of doing work

done when a force acts on something that undergoes a displacement from one position to another

integral, from the initial position to the final position, of the dot product of the force and the
infinitesimal displacement along the path over which the force acts

net work done on a particle is equal to the change in its kinetic energy

KEY EQUATIONS

Work done by a force over an infinitesimal displacement dW = F→ · d r→ = | F→ ||d r→ |cos θ

Work done by a force acting along a path from A to B
WAB = ∫

pathAB
F→ · d r→

Work done by a constant force of kinetic friction Wfr = − fk |lAB|
Work done going from A to B by Earth’s gravity, near its surface Wgrav,AB = −mg(yB − yA)

Work done going from A to B by one-dimensional spring force Wspring,AB = −⎛
⎝
1
2k

⎞
⎠
⎛
⎝xB

2 − xA
2 ⎞

⎠

Kinetic energy of a non-relativistic particle K = 1
2mv

2 = p2

2m

Work-energy theorem Wnet = KB − KA

Power as rate of doing work P = dW
dt

Power as the dot product of force and velocity P = F→ · v→

SUMMARY

7.1 Work

• The infinitesimal increment of work done by a force, acting over an infinitesimal displacement, is the dot product
of the force and the displacement.

• The work done by a force, acting over a finite path, is the integral of the infinitesimal increments of work done
along the path.

• The work done against a force is the negative of the work done by the force.

• The work done by a normal or frictional contact force must be determined in each particular case.

• The work done by the force of gravity, on an object near the surface of Earth, depends only on the weight of the
object and the difference in height through which it moved.

• The work done by a spring force, acting from an initial position to a final position, depends only on the spring
constant and the squares of those positions.
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7.2 Kinetic Energy

• The kinetic energy of a particle is the product of one-half its mass and the square of its speed, for non-relativistic
speeds.

• The kinetic energy of a system is the sum of the kinetic energies of all the particles in the system.

• Kinetic energy is relative to a frame of reference, is always positive, and is sometimes given special names for
different types of motion.

7.3 Work-Energy Theorem

• Because the net force on a particle is equal to its mass times the derivative of its velocity, the integral for the net
work done on the particle is equal to the change in the particle’s kinetic energy. This is the work-energy theorem.

• You can use the work-energy theorem to find certain properties of a system, without having to solve the differential
equation for Newton’s second law.

7.4 Power

• Power is the rate of doing work; that is, the derivative of work with respect to time.

• Alternatively, the work done, during a time interval, is the integral of the power supplied over the time interval.

• The power delivered by a force, acting on a moving particle, is the dot product of the force and the particle’s
velocity.

CONCEPTUAL QUESTIONS

7.1 Work

1. Give an example of something we think of as work in
everyday circumstances that is not work in the scientific
sense. Is energy transferred or changed in form in your
example? If so, explain how this is accomplished without
doing work.

2. Give an example of a situation in which there is a force
and a displacement, but the force does no work. Explain
why it does no work.

3. Describe a situation in which a force is exerted for a
long time but does no work. Explain.

4. A body moves in a circle at constant speed. Does the
centripetal force that accelerates the body do any work?
Explain.

5. Suppose you throw a ball upward and catch it when
it returns at the same height. How much work does the
gravitational force do on the ball over its entire trip?

6. Why is it more difficult to do sit-ups while on a slant
board than on a horizontal surface? (See below.)

7. As a young man, Tarzan climbed up a vine to reach his
tree house. As he got older, he decided to build and use a
staircase instead. Since the work of the gravitational force
mg is path independent, what did the King of the Apes gain
in using stairs?
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7.2 Kinetic Energy

8. A particle of m has a velocity of vx i
^

+ vy j
^

+ vz k̂ .

Is its kinetic energy given by

m(vx 2 i
^

+ vy 2 j
^

+ vz 2 k̂ )/2? If not, what is the correct

expression?

9. One particle has mass m and a second particle has mass
2m. The second particle is moving with speed v and the first
with speed 2v. How do their kinetic energies compare?

10. A person drops a pebble of mass m1 from a height

h, and it hits the floor with kinetic energy K. The person
drops another pebble of mass m2 from a height of 2h, and

it hits the floor with the same kinetic energy K. How do the
masses of the pebbles compare?

7.3 Work-Energy Theorem

11. The person shown below does work on the lawn
mower. Under what conditions would the mower gain
energy from the person pushing the mower? Under what
conditions would it lose energy?

12. Work done on a system puts energy into it. Work done
by a system removes energy from it. Give an example for
each statement.

13. Two marbles of masses m and 2m are dropped from
a height h. Compare their kinetic energies when they reach
the ground.

14. Compare the work required to accelerate a car of mass
2000 kg from 30.0 to 40.0 km/h with that required for an
acceleration from 50.0 to 60.0 km/h.

15. Suppose you are jogging at constant velocity. Are you
doing any work on the environment and vice versa?

16. Two forces act to double the speed of a particle,
initially moving with kinetic energy of 1 J. One of the
forces does 4 J of work. How much work does the other
force do?

7.4 Power

17. Most electrical appliances are rated in watts. Does this
rating depend on how long the appliance is on? (When off,
it is a zero-watt device.) Explain in terms of the definition
of power.

18. Explain, in terms of the definition of power, why
energy consumption is sometimes listed in kilowatt-hours
rather than joules. What is the relationship between these
two energy units?

19. A spark of static electricity, such as that you might
receive from a doorknob on a cold dry day, may carry a few
hundred watts of power. Explain why you are not injured
by such a spark.

20. Does the work done in lifting an object depend on how
fast it is lifted? Does the power expended depend on how
fast it is lifted?

21. Can the power expended by a force be negative?

22. How can a 50-W light bulb use more energy than a
1000-W oven?

PROBLEMS

7.1 Work

23. How much work does a supermarket checkout
attendant do on a can of soup he pushes 0.600 m
horizontally with a force of 5.00 N?

24. A 75.0-kg person climbs stairs, gaining 2.50 m in
height. Find the work done to accomplish this task.

25. (a) Calculate the work done on a 1500-kg elevator car

by its cable to lift it 40.0 m at constant speed, assuming
friction averages 100 N. (b) What is the work done on the
lift by the gravitational force in this process? (c) What is the
total work done on the lift?

26. Suppose a car travels 108 km at a speed of 30.0 m/s,
and uses 2.0 gal of gasoline. Only 30% of the gasoline goes
into useful work by the force that keeps the car moving
at constant speed despite friction. (The energy content of
gasoline is about 140 MJ/gal.) (a) What is the magnitude of
the force exerted to keep the car moving at constant speed?
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(b) If the required force is directly proportional to speed,
how many gallons will be used to drive 108 km at a speed
of 28.0 m/s?

27. Calculate the work done by an 85.0-kg man who
pushes a crate 4.00 m up along a ramp that makes an angle
of 20.0° with the horizontal (see below). He exerts a force

of 500 N on the crate parallel to the ramp and moves at a
constant speed. Be certain to include the work he does on
the crate and on his body to get up the ramp.

28. How much work is done by the boy pulling his sister
30.0 m in a wagon as shown below? Assume no friction
acts on the wagon.

29. A shopper pushes a grocery cart 20.0 m at constant
speed on level ground, against a 35.0 N frictional force. He
pushes in a direction 25.0° below the horizontal. (a) What

is the work done on the cart by friction? (b) What is the
work done on the cart by the gravitational force? (c) What
is the work done on the cart by the shopper? (d) Find the
force the shopper exerts, using energy considerations. (e)
What is the total work done on the cart?

30. Suppose the ski patrol lowers a rescue sled and victim,
having a total mass of 90.0 kg, down a 60.0° slope at

constant speed, as shown below. The coefficient of friction
between the sled and the snow is 0.100. (a) How much
work is done by friction as the sled moves 30.0 m along
the hill? (b) How much work is done by the rope on the
sled in this distance? (c) What is the work done by the
gravitational force on the sled? (d) What is the total work
done?

31. A constant 20-N force pushes a small ball in the
direction of the force over a distance of 5.0 m. What is the
work done by the force?

32. A toy cart is pulled a distance of 6.0 m in a straight line
across the floor. The force pulling the cart has a magnitude
of 20 N and is directed at 37° above the horizontal. What

is the work done by this force?

33. A 5.0-kg box rests on a horizontal surface. The
coefficient of kinetic friction between the box and surface
is µK = 0.50. A horizontal force pulls the box at constant

velocity for 10 cm. Find the work done by (a) the applied
horizontal force, (b) the frictional force, and (c) the net
force.

34. A sled plus passenger with total mass 50 kg is pulled
20 m across the snow (µk = 0.20) at constant velocity by

a force directed 25° above the horizontal. Calculate (a) the

work of the applied force, (b) the work of friction, and (c)
the total work.

35. Suppose that the sled plus passenger of the preceding
problem is pushed 20 m across the snow at constant
velocity by a force directed 30° below the horizontal.

Calculate (a) the work of the applied force, (b) the work of
friction, and (c) the total work.

36. How much work does the force F(x) = (−2.0/x) N
do on a particle as it moves from x = 2.0 m to

x = 5.0 m?

352 Chapter 7 | Work and Kinetic Energy

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



37. How much work is done against the gravitational force
on a 5.0-kg briefcase when it is carried from the ground
floor to the roof of the Empire State Building, a vertical
climb of 380 m?

38. It takes 500 J of work to compress a spring 10 cm.
What is the force constant of the spring?

39. A bungee cord is essentially a very long rubber band
that can stretch up to four times its unstretched length.
However, its spring constant varies over its stretch [see
Menz, P.G. “The Physics of Bungee Jumping.” The Physics
Teacher (November 1993) 31: 483-487]. Take the length of
the cord to be along the x-direction and define the stretch
x as the length of the cord l minus its un-stretched length
l0; that is, x = l − l0 (see below). Suppose a particular

bungee cord has a spring constant, for 0 ≤ x ≤ 4.88 m , of

k1 = 204 N/m and for 4.88 m ≤ x , of k2 = 111 N/m.
(Recall that the spring constant is the slope of the force
F(x) versus its stretch x.) (a) What is the tension in the
cord when the stretch is 16.7 m (the maximum desired for a
given jump)? (b) How much work must be done against the
elastic force of the bungee cord to stretch it 16.7 m?

Figure 7.16 (credit: Graeme Churchard)

40. A bungee cord exerts a nonlinear elastic force of

magnitude F(x) = k1 x + k2 x
3, where x is the distance

the cord is stretched, k1 = 204 N/m and

k2 = −0.233 N/m3. How much work must be done on the

cord to stretch it 16.7 m?

41. Engineers desire to model the magnitude of the elastic
force of a bungee cord using the equation

F(x) = a
⎡

⎣
⎢x + 9 m

9 m − ⎛
⎝

9 m
x + 9 m

⎞
⎠

2⎤

⎦
⎥ ,

where x is the stretch of the cord along its length and a is
a constant. If it takes 22.0 kJ of work to stretch the cord by
16.7 m, determine the value of the constant a.

42. A particle moving in the xy-plane is subject to a force

F→ (x, y) = (50 N · m2) (x i
^

+ y j
^

)
(x2 + y2)3/2,

where x and y are in meters. Calculate the work done on the
particle by this force, as it moves in a straight line from the
point (3 m, 4 m) to the point (8 m, 6 m).

43. A particle moves along a curved path

y(x) = (10 m)⎧

⎩
⎨1 + cos[(0.1 m−1)x]⎫

⎭
⎬, from x = 0 to

x = 10π m, subject to a tangential force of variable

magnitude F(x) = (10 N)sin[(0.1 m−1)x]. How much

work does the force do? (Hint: Consult a table of integrals
or use a numerical integration program.)

7.2 Kinetic Energy

44. Compare the kinetic energy of a 20,000-kg truck
moving at 110 km/h with that of an 80.0-kg astronaut in
orbit moving at 27,500 km/h.

45. (a) How fast must a 3000-kg elephant move to have
the same kinetic energy as a 65.0-kg sprinter running at
10.0 m/s? (b) Discuss how the larger energies needed for
the movement of larger animals would relate to metabolic
rates.

46. Estimate the kinetic energy of a 90,000-ton aircraft
carrier moving at a speed of at 30 knots. You will need to
look up the definition of a nautical mile to use in converting
the unit for speed, where 1 knot equals 1 nautical mile per
hour.

47. Calculate the kinetic energies of (a) a 2000.0-kg
automobile moving at 100.0 km/h; (b) an 80.-kg runner

sprinting at 10. m/s; and (c) a 9.1 × 10−31 -kg electron

moving at 2.0 × 107 m/s.

48. A 5.0-kg body has three times the kinetic energy of
an 8.0-kg body. Calculate the ratio of the speeds of these
bodies.

49. An 8.0-g bullet has a speed of 800 m/s. (a) What is its
kinetic energy? (b) What is its kinetic energy if the speed is
halved?
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7.3 Work-Energy Theorem

50. (a) Calculate the force needed to bring a 950-kg car
to rest from a speed of 90.0 km/h in a distance of 120 m
(a fairly typical distance for a non-panic stop). (b) Suppose
instead the car hits a concrete abutment at full speed and is
brought to a stop in 2.00 m. Calculate the force exerted on
the car and compare it with the force found in part (a).

51. A car’s bumper is designed to withstand a 4.0-km/
h (1.1-m/s) collision with an immovable object without
damage to the body of the car. The bumper cushions the
shock by absorbing the force over a distance. Calculate the
magnitude of the average force on a bumper that collapses
0.200 m while bringing a 900-kg car to rest from an initial
speed of 1.1 m/s.

52. Boxing gloves are padded to lessen the force of a
blow. (a) Calculate the force exerted by a boxing glove on
an opponent’s face, if the glove and face compress 7.50
cm during a blow in which the 7.00-kg arm and glove
are brought to rest from an initial speed of 10.0 m/s. (b)
Calculate the force exerted by an identical blow in the gory
old days when no gloves were used, and the knuckles and
face would compress only 2.00 cm. Assume the change in
mass by removing the glove is negligible. (c) Discuss the
magnitude of the force with glove on. Does it seem high
enough to cause damage even though it is lower than the
force with no glove?

53. Using energy considerations, calculate the average
force a 60.0-kg sprinter exerts backward on the track to
accelerate from 2.00 to 8.00 m/s in a distance of 25.0 m,
if he encounters a headwind that exerts an average force of
30.0 N against him.

54. A 5.0-kg box has an acceleration of 2.0 m/s2 when

it is pulled by a horizontal force across a surface with
µK = 0.50. Find the work done over a distance of 10 cm

by (a) the horizontal force, (b) the frictional force, and (c)
the net force. (d) What is the change in kinetic energy of the
box?

55. A constant 10-N horizontal force is applied to a 20-kg
cart at rest on a level floor. If friction is negligible, what is
the speed of the cart when it has been pushed 8.0 m?

56. In the preceding problem, the 10-N force is applied at
an angle of 45° below the horizontal. What is the speed of

the cart when it has been pushed 8.0 m?

57. Compare the work required to stop a 100-kg crate
sliding at 1.0 m/s and an 8.0-g bullet traveling at 500 m/s.

58. A wagon with its passenger sits at the top of a hill.
The wagon is given a slight push and rolls 100 m down a

10° incline to the bottom of the hill. What is the wagon’s

speed when it reaches the end of the incline. Assume that
the retarding force of friction is negligible.

59. An 8.0-g bullet with a speed of 800 m/s is shot into a
wooden block and penetrates 20 cm before stopping. What
is the average force of the wood on the bullet? Assume the
block does not move.

60. A 2.0-kg block starts with a speed of 10 m/s at the
bottom of a plane inclined at 37° to the horizontal. The

coefficient of sliding friction between the block and plane is
µk = 0.30. (a) Use the work-energy principle to determine

how far the block slides along the plane before
momentarily coming to rest. (b) After stopping, the block
slides back down the plane. What is its speed when it
reaches the bottom? (Hint: For the round trip, only the force
of friction does work on the block.)

61. When a 3.0-kg block is pushed against a massless

spring of force constant constant 4.5 × 103 N/m, the

spring is compressed 8.0 cm. The block is released, and it
slides 2.0 m (from the point at which it is released) across
a horizontal surface before friction stops it. What is the
coefficient of kinetic friction between the block and the
surface?

62. A small block of mass 200 g starts at rest at A, slides
to B where its speed is vB = 8.0 m/s, then slides along the

horizontal surface a distance 10 m before coming to rest
at C. (See below.) (a) What is the work of friction along
the curved surface? (b) What is the coefficient of kinetic
friction along the horizontal surface?

63. A small object is placed at the top of an incline that is
essentially frictionless. The object slides down the incline
onto a rough horizontal surface, where it stops in 5.0 s
after traveling 60 m. (a) What is the speed of the object
at the bottom of the incline and its acceleration along the
horizontal surface? (b) What is the height of the incline?

64. When released, a 100-g block slides down the path
shown below, reaching the bottom with a speed of 4.0 m/s.
How much work does the force of friction do?
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65. A 0.22LR-caliber bullet like that mentioned in
Example 7.10 is fired into a door made of a single
thickness of 1-inch pine boards. How fast would the bullet
be traveling after it penetrated through the door?

66. A sled starts from rest at the top of a snow-covered
incline that makes a 22° angle with the horizontal. After

sliding 75 m down the slope, its speed is 14 m/s. Use the
work-energy theorem to calculate the coefficient of kinetic
friction between the runners of the sled and the snowy
surface.

7.4 Power

67. A person in good physical condition can put out 100
W of useful power for several hours at a stretch, perhaps
by pedaling a mechanism that drives an electric generator.
Neglecting any problems of generator efficiency and
practical considerations such as resting time: (a) How many
people would it take to run a 4.00-kW electric clothes
dryer? (b) How many people would it take to replace a large
electric power plant that generates 800 MW?

68. What is the cost of operating a 3.00-W electric clock
for a year if the cost of electricity is $0.0900 per kW · h ?

69. A large household air conditioner may consume 15.0
kW of power. What is the cost of operating this air
conditioner 3.00 h per day for 30.0 d if the cost of
electricity is $0.110 per kW · h ?

70. (a) What is the average power consumption in watts of
an appliance that uses 5.00 kW · h of energy per day? (b)

How many joules of energy does this appliance consume in
a year?

71. (a) What is the average useful power output of a

person who does 6.00 × 106 J of useful work in 8.00 h?

(b) Working at this rate, how long will it take this person
to lift 2000 kg of bricks 1.50 m to a platform? (Work done
to lift his body can be omitted because it is not considered
useful output here.)

72. A 500-kg dragster accelerates from rest to a final
speed of 110 m/s in 400 m (about a quarter of a mile) and
encounters an average frictional force of 1200 N. What is
its average power output in watts and horsepower if this
takes 7.30 s?

73. (a) How long will it take an 850-kg car with a useful
power output of 40.0 hp (1 hp equals 746 W) to reach a
speed of 15.0 m/s, neglecting friction? (b) How long will
this acceleration take if the car also climbs a 3.00-m high
hill in the process?

74. (a) Find the useful power output of an elevator motor
that lifts a 2500-kg load a height of 35.0 m in 12.0 s, if it
also increases the speed from rest to 4.00 m/s. Note that the
total mass of the counterbalanced system is 10,000 kg—so
that only 2500 kg is raised in height, but the full 10,000 kg
is accelerated. (b) What does it cost, if electricity is $0.0900
per kW · h ?

75. (a) How long would it take a 1.50 × 105 -kg airplane

with engines that produce 100 MW of power to reach a
speed of 250 m/s and an altitude of 12.0 km if air resistance
were negligible? (b) If it actually takes 900 s, what is the
power? (c) Given this power, what is the average force
of air resistance if the airplane takes 1200 s? (Hint: You
must find the distance the plane travels in 1200 s assuming
constant acceleration.)

76. Calculate the power output needed for a 950-kg car
to climb a 2.00° slope at a constant 30.0 m/s while

encountering wind resistance and friction totaling 600 N.

77. A man of mass 80 kg runs up a flight of stairs 20 m
high in 10 s. (a) how much power is used to lift the man? (b)
If the man’s body is 25% efficient, how much power does
he expend?

78. The man of the preceding problem consumes

approximately 1.05 × 107 J (2500 food calories) of

energy per day in maintaining a constant weight. What is
the average power he produces over a day? Compare this
with his power production when he runs up the stairs.

79. An electron in a television tube is accelerated

uniformly from rest to a speed of 8.4 × 107 m/s over a

distance of 2.5 cm. What is the power delivered to the
electron at the instant that its displacement is 1.0 cm?

80. Coal is lifted out of a mine a vertical distance of 50 m
by an engine that supplies 500 W to a conveyer belt. How
much coal per minute can be brought to the surface? Ignore
the effects of friction.

81. A girl pulls her 15-kg wagon along a flat sidewalk by
applying a 10-N force at 37° to the horizontal. Assume

that friction is negligible and that the wagon starts from
rest. (a) How much work does the girl do on the wagon in
the first 2.0 s. (b) How much instantaneous power does she
exert at t = 2.0 s ?
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82. A typical automobile engine has an efficiency of 25%.
Suppose that the engine of a 1000-kg automobile has a
maximum power output of 140 hp. What is the maximum
grade that the automobile can climb at 50 km/h if the
frictional retarding force on it is 300 N?

83. When jogging at 13 km/h on a level surface, a 70-kg
man uses energy at a rate of approximately 850 W. Using
the facts that the “human engine” is approximately 25%
efficient, determine the rate at which this man uses energy
when jogging up a 5.0° slope at this same speed. Assume

that the frictional retarding force is the same in both cases.

ADDITIONAL PROBLEMS

84. A cart is pulled a distance D on a flat, horizontal
surface by a constant force F that acts at an angle θ with

the horizontal direction. The other forces on the object
during this time are gravity ( Fw ), normal forces ( FN1 )

and ( FN2 ), and rolling frictions Fr1 and Fr2 , as shown

below. What is the work done by each force?

85. Consider a particle on which several forces act, one
of which is known to be constant in time:

F→ 1 = (3 N) i
^

+ (4 N) j
^

. As a result, the particle moves

along the x-axis from x = 0 to x = 5 m in some time

interval. What is the work done by F→ 1 ?

86. Consider a particle on which several forces act, one
of which is known to be constant in time:

F→ 1 = (3 N) i
^

+ (4 N) j
^

. As a result, the particle moves

first along the x-axis from x = 0 to x = 5 m and then

parallel to the y-axis from y = 0 to y = 6 m. What is the

work done by F→ 1 ?

87. Consider a particle on which several forces act, one
of which is known to be constant in time:

F→ 1 = (3 N) i
^

+ (4 N) j
^

. As a result, the particle moves

along a straight path from a Cartesian coordinate of (0 m, 0

m) to (5 m, 6 m). What is the work done by F→ 1 ?

88. Consider a particle on which a force acts that depends
on the position of the particle. This force is given by

F→ 1 = (2y) i
^

+ (3x) j
^

. Find the work done by this force

when the particle moves from the origin to a point 5 meters
to the right on the x-axis.

89. A boy pulls a 5-kg cart with a 20-N force at an angle
of 30° above the horizontal for a length of time. Over

this time frame, the cart moves a distance of 12 m on the
horizontal floor. (a) Find the work done on the cart by the
boy. (b) What will be the work done by the boy if he pulled
with the same force horizontally instead of at an angle of
30° above the horizontal over the same distance?

90. A crate of mass 200 kg is to be brought from a site
on the ground floor to a third floor apartment. The workers
know that they can either use the elevator first, then slide
it along the third floor to the apartment, or first slide the
crate to another location marked C below, and then take
the elevator to the third floor and slide it on the third floor
a shorter distance. The trouble is that the third floor is
very rough compared to the ground floor. Given that the
coefficient of kinetic friction between the crate and the
ground floor is 0.100 and between the crate and the third
floor surface is 0.300, find the work needed by the workers
for each path shown from A to E. Assume that the force
the workers need to do is just enough to slide the crate at
constant velocity (zero acceleration). Note: The work by
the elevator against the force of gravity is not done by the
workers.

91. A hockey puck of mass 0.17 kg is shot across a rough
floor with the roughness different at different places, which
can be described by a position-dependent coefficient of
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kinetic friction. For a puck moving along the x-axis, the
coefficient of kinetic friction is the following function of x,
where x is in m: µ(x) = 0.1 + 0.05x. Find the work done

by the kinetic frictional force on the hockey puck when
it has moved (a) from x = 0 to x = 2 m , and (b) from

x = 2 m to x = 4 m .

92. A horizontal force of 20 N is required to keep a 5.0
kg box traveling at a constant speed up a frictionless incline
for a vertical height change of 3.0 m. (a) What is the work
done by gravity during this change in height? (b) What is
the work done by the normal force? (c) What is the work
done by the horizontal force?

93. A 7.0-kg box slides along a horizontal frictionless
floor at 1.7 m/s and collides with a relatively massless
spring that compresses 23 cm before the box comes to
a stop. (a) How much kinetic energy does the box have
before it collides with the spring? (b) Calculate the work
done by the spring. (c) Determine the spring constant of the
spring.

94. You are driving your car on a straight road with a
coefficient of friction between the tires and the road of 0.55.
A large piece of debris falls in front of your view and you
immediate slam on the brakes, leaving a skid mark of 30.5
m (100-feet) long before coming to a stop. A policeman
sees your car stopped on the road, looks at the skid mark,
and gives you a ticket for traveling over the 13.4 m/s (30

mph) speed limit. Should you fight the speeding ticket in
court?

95. A crate is being pushed across a rough floor surface.
If no force is applied on the crate, the crate will slow down
and come to a stop. If the crate of mass 50 kg moving at
speed 8 m/s comes to rest in 10 seconds, what is the rate
at which the frictional force on the crate takes energy away
from the crate?

96. Suppose a horizontal force of 20 N is required to
maintain a speed of 8 m/s of a 50 kg crate. (a) What is the
power of this force? (b) Note that the acceleration of the
crate is zero despite the fact that 20 N force acts on the crate
horizontally. What happens to the energy given to the crate
as a result of the work done by this 20 N force?

97. Grains from a hopper falls at a rate of 10 kg/s
vertically onto a conveyor belt that is moving horizontally
at a constant speed of 2 m/s. (a) What force is needed to
keep the conveyor belt moving at the constant velocity?
(b) What is the minimum power of the motor driving the
conveyor belt?

98. A cyclist in a race must climb a 5° hill at a speed of 8

m/s. If the mass of the bike and the biker together is 80 kg,
what must be the power output of the biker to achieve the
goal?

CHALLENGE PROBLEMS

99. Shown below is a 40-kg crate that is pushed at
constant velocity a distance 8.0 m along a 30° incline by

the horizontal force F→ . The coefficient of kinetic friction

between the crate and the incline is µk = 0.40. Calculate

the work done by (a) the applied force, (b) the frictional
force, (c) the gravitational force, and (d) the net force.

100. The surface of the preceding problem is modified
so that the coefficient of kinetic friction is decreased. The
same horizontal force is applied to the crate, and after being
pushed 8.0 m, its speed is 5.0 m/s. How much work is now
done by the force of friction? Assume that the crate starts at
rest.

101. The force F(x) varies with position, as shown below.
Find the work done by this force on a particle as it moves
from x = 1.0 m to x = 5.0 m.

102. Find the work done by the same force in Example
7.4, between the same points,
A = (0, 0) and B = (2 m, 2 m) , over a circular arc of

radius 2 m, centered at (0, 2 m). Evaluate the path integral
using Cartesian coordinates. (Hint: You will probably need
to consult a table of integrals.)

103. Answer the preceding problem using polar
coordinates.
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104. Find the work done by the same force in Example
7.4, between the same points,
A = (0, 0) and B = (2 m, 2 m) , over a circular arc of

radius 2 m, centered at (2 m, 0). Evaluate the path integral
using Cartesian coordinates. (Hint: You will probably need
to consult a table of integrals.)

105. Answer the preceding problem using polar
coordinates.

106. Constant power P is delivered to a car of mass m by
its engine. Show that if air resistance can be ignored, the
distance covered in a time t by the car, starting from rest, is

given by s = (8P/9m)1/2 t3/2.

107. Suppose that the air resistance a car encounters is
independent of its speed. When the car travels at 15 m/

s, its engine delivers 20 hp to its wheels. (a) What is the
power delivered to the wheels when the car travels at 30 m/
s? (b) How much energy does the car use in covering 10
km at 15 m/s? At 30 m/s? Assume that the engine is 25%
efficient. (c) Answer the same questions if the force of air
resistance is proportional to the speed of the automobile. (d)
What do these results, plus your experience with gasoline
consumption, tell you about air resistance?

108. Consider a linear spring, as in Figure 7.7(a), with
mass M uniformly distributed along its length. The left end
of the spring is fixed, but the right end, at the equilibrium
position x = 0, is moving with speed v in the x-direction.

What is the total kinetic energy of the spring? (Hint: First
express the kinetic energy of an infinitesimal element of the
spring dm in terms of the total mass, equilibrium length,
speed of the right-hand end, and position along the spring;
then integrate.)
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8 | POTENTIAL ENERGY
AND CONSERVATION OF
ENERGY

Figure 8.1 Shown here is part of a Ball Machine sculpture by George Rhoads. A ball in this contraption is lifted, rolls, falls,
bounces, and collides with various objects, but throughout its travels, its kinetic energy changes in definite, predictable amounts,
which depend on its position and the objects with which it interacts. (credit: modification of work by Roland Tanglao)

Chapter Outline

8.1 Potential Energy of a System

8.2 Conservative and Non-Conservative Forces

8.3 Conservation of Energy

8.4 Potential Energy Diagrams and Stability

8.5 Sources of Energy

Introduction
In George Rhoads’ rolling ball sculpture, the principle of conservation of energy governs the changes in the ball’s kinetic
energy and relates them to changes and transfers for other types of energy associated with the ball’s interactions. In this
chapter, we introduce the important concept of potential energy. This will enable us to formulate the law of conservation
of mechanical energy and to apply it to simple systems, making solving problems easier. In the final section on sources of
energy, we will consider energy transfers and the general law of conservation of energy. Throughout this book, the law of
conservation of energy will be applied in increasingly more detail, as you encounter more complex and varied systems, and
other forms of energy.
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8.1 | Potential Energy of a System

Learning Objectives

By the end of this section, you will be able to:

• Relate the difference of potential energy to work done on a particle for a system without friction
or air drag

• Explain the meaning of the zero of the potential energy function for a system

• Calculate and apply the gravitational potential energy for an object near Earth’s surface and the
elastic potential energy of a mass-spring system

In Work, we saw that the work done on an object by the constant gravitational force, near the surface of Earth, over any
displacement is a function only of the difference in the positions of the end-points of the displacement. This property allows
us to define a different kind of energy for the system than its kinetic energy, which is called potential energy. We consider
various properties and types of potential energy in the following subsections.

Potential Energy Basics
In Motion in Two and Three Dimensions, we analyzed the motion of a projectile, like kicking a football in Figure
8.2. For this example, let’s ignore friction and air resistance. As the football rises, the work done by the gravitational force
on the football is negative, because the ball’s displacement is positive vertically and the force due to gravity is negative
vertically. We also noted that the ball slowed down until it reached its highest point in the motion, thereby decreasing the
ball’s kinetic energy. This loss in kinetic energy translates to a gain in gravitational potential energy of the football-Earth
system.

As the football falls toward Earth, the work done on the football is now positive, because the displacement and the
gravitational force both point vertically downward. The ball also speeds up, which indicates an increase in kinetic energy.
Therefore, energy is converted from gravitational potential energy back into kinetic energy.

Figure 8.2 As a football starts its descent toward the wide receiver, gravitational potential energy is converted back into
kinetic energy.

Based on this scenario, we can define the difference of potential energy from point A to point B as the negative of the work
done:

(8.1)ΔUAB = UB − UA = −WAB.

This formula explicitly states a potential energy difference, not just an absolute potential energy. Therefore, we need to
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define potential energy at a given position in such a way as to state standard values of potential energy on their own, rather
than potential energy differences. We do this by rewriting the potential energy function in terms of an arbitrary constant,

(8.2)ΔU = U( r→ ) − U( r→ 0).

The choice of the potential energy at a starting location of r→ 0 is made out of convenience in the given problem. Most

importantly, whatever choice is made should be stated and kept consistent throughout the given problem. There are some
well-accepted choices of initial potential energy. For example, the lowest height in a problem is usually defined as zero
potential energy, or if an object is in space, the farthest point away from the system is often defined as zero potential energy.

Then, the potential energy, with respect to zero at r→ 0, is just U⎛
⎝ r→ ⎞

⎠.

As long as there is no friction or air resistance, the change in kinetic energy of the football equals the change in gravitational
potential energy of the football. This can be generalized to any potential energy:

(8.3)ΔKAB = ΔUAB.

Let’s look at a specific example, choosing zero potential energy for gravitational potential energy at convenient points.

Example 8.1

Basic Properties of Potential Energy

A particle moves along the x-axis under the action of a force given by F = −ax2 , where a = 3 N/m2 . (a) What

is the difference in its potential energy as it moves from xA = 1 m to xB = 2 m ? (b) What is the particle’s

potential energy at x = 1 m with respect to a given 0.5 J of potential energy at x = 0 ?

Strategy

(a) The difference in potential energy is the negative of the work done, as defined by Equation 8.1. The work
is defined in the previous chapter as the dot product of the force with the distance. Since the particle is moving

forward in the x-direction, the dot product simplifies to a multiplication ( i
^

· i
^

= 1 ). To find the total work done,

we need to integrate the function between the given limits. After integration, we can state the work or the potential
energy. (b) The potential energy function, with respect to zero at x = 0 , is the indefinite integral encountered in

part (a), with the constant of integration determined from Equation 8.3. Then, we substitute the x-value into the
function of potential energy to calculate the potential energy at x = 1 m.

Solution
a. The work done by the given force as the particle moves from coordinate x to x + dx in one dimension is

dW = F→ · d r→ = Fdx = −ax2dx.

Substituting this expression into Equation 8.1, we obtain

ΔU = −W = ∫
x1

x2
ax2dx = 1

3(3 N/m2)x2|1 m
2 m

= 7 J.

b. The indefinite integral for the potential energy function in part (a) is

U(x) = 1
3ax

3 + const.,

and we want the constant to be determined by

U(0) = 0.5 J.

Thus, the potential energy with respect to zero at x = 0 is just
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U(x) = 1
3ax

3 + 0.5 J.

Therefore, the potential energy at x = 1 m is

U(1 m) = 1
3

⎛
⎝3 N/m2⎞

⎠(1 m)3 + 0.5 J = 1.5 J.

Significance

In this one-dimensional example, any function we can integrate, independent of path, is conservative. Notice
how we applied the definition of potential energy difference to determine the potential energy function with
respect to zero at a chosen point. Also notice that the potential energy, as determined in part (b), at x = 1 m is

U(1 m) = 1 J and at x = 2 m is U(2 m) = 8 J ; their difference is the result in part (a).

Check Your Understanding In Example 8.1, what are the potential energies of the particle at x = 1 m
and x = 2 m with respect to zero at x = 1.5 m ? Verify that the difference of potential energy is still 7 J.

Systems of Several Particles
In general, a system of interest could consist of several particles. The difference in the potential energy of the system is the
negative of the work done by gravitational or elastic forces, which, as we will see in the next section, are conservative forces.
The potential energy difference depends only on the initial and final positions of the particles, and on some parameters that
characterize the interaction (like mass for gravity or the spring constant for a Hooke’s law force).

It is important to remember that potential energy is a property of the interactions between objects in a chosen system, and
not just a property of each object. This is especially true for electric forces, although in the examples of potential energy we
consider below, parts of the system are either so big (like Earth, compared to an object on its surface) or so small (like a
massless spring), that the changes those parts undergo are negligible if included in the system.

Types of Potential Energy
For each type of interaction present in a system, you can label a corresponding type of potential energy. The total potential
energy of the system is the sum of the potential energies of all the types. (This follows from the additive property of the dot
product in the expression for the work done.) Let’s look at some specific examples of types of potential energy discussed in
Work. First, we consider each of these forces when acting separately, and then when both act together.

Gravitational potential energy near Earth’s surface

The system of interest consists of our planet, Earth, and one or more particles near its surface (or bodies small enough to
be considered as particles, compared to Earth). The gravitational force on each particle (or body) is just its weight mg near
the surface of Earth, acting vertically down. According to Newton’s third law, each particle exerts a force on Earth of equal
magnitude but in the opposite direction. Newton’s second law tells us that the magnitude of the acceleration produced by
each of these forces on Earth is mg divided by Earth’s mass. Since the ratio of the mass of any ordinary object to the mass
of Earth is vanishingly small, the motion of Earth can be completely neglected. Therefore, we consider this system to be a
group of single-particle systems, subject to the uniform gravitational force of Earth.

In Work, the work done on a body by Earth’s uniform gravitational force, near its surface, depended on the mass of the
body, the acceleration due to gravity, and the difference in height the body traversed, as given by Equation 7.4. By
definition, this work is the negative of the difference in the gravitational potential energy, so that difference is

(8.4)ΔUgrav = −Wgrav, AB = mg(yB − yA).

You can see from this that the gravitational potential energy function, near Earth’s surface, is

(8.5)U(y) = mgy + const.

You can choose the value of the constant, as described in the discussion of Equation 8.2; however, for solving most
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problems, the most convenient constant to choose is zero for when y = 0, which is the lowest vertical position in the

problem.

Figure 8.3 Don’t jump—you have so much potential (gravitational potential energy, that is).
(credit: Andy Spearing)

Example 8.2

Gravitational Potential Energy of a Hiker

The summit of Great Blue Hill in Milton, MA, is 147 m above its base and has an elevation above sea level of 195
m (Figure 8.4). (Its Native American name, Massachusett, was adopted by settlers for naming the Bay Colony
and state near its location.) A 75-kg hiker ascends from the base to the summit. What is the gravitational potential
energy of the hiker-Earth system with respect to zero gravitational potential energy at base height, when the hiker
is (a) at the base of the hill, (b) at the summit, and (c) at sea level, afterward?

Figure 8.4 Sketch of the profile of Great Blue Hill, Milton, MA. The altitudes of the three levels are indicated.

Strategy

First, we need to pick an origin for the y-axis and then determine the value of the constant that makes the potential
energy zero at the height of the base. Then, we can determine the potential energies from Equation 8.5, based
on the relationship between the zero potential energy height and the height at which the hiker is located.

Solution
a. Let’s choose the origin for the y-axis at base height, where we also want the zero of potential energy to

be. This choice makes the constant equal to zero and

U(base) = U(0) = 0.
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b. At the summit, y = 147 m , so

U(summit) = U(147 m) = mgh = (75 × 9.8 N)(147 m) = 108 kJ.
c. At sea level, y = (147 − 195)m = −48 m , so

U(sea-level) = (75 × 9.8 N)(−48 m) = −35.3 kJ.

Significance

Besides illustrating the use of Equation 8.4 and Equation 8.5, the values of gravitational potential energy we
found are reasonable. The gravitational potential energy is higher at the summit than at the base, and lower at sea
level than at the base. Gravity does work on you on your way up, too! It does negative work and not quite as much
(in magnitude), as your muscles do. But it certainly does work. Similarly, your muscles do work on your way
down, as negative work. The numerical values of the potential energies depend on the choice of zero of potential
energy, but the physically meaningful differences of potential energy do not. [Note that since Equation 8.2 is a
difference, the numerical values do not depend on the origin of coordinates.]

Check Your Understanding What are the values of the gravitational potential energy of the hiker at the
base, summit, and sea level, with respect to a sea-level zero of potential energy?

Elastic potential energy

In Work, we saw that the work done by a perfectly elastic spring, in one dimension, depends only on the spring constant
and the squares of the displacements from the unstretched position, as given in Equation 7.5. This work involves only
the properties of a Hooke’s law interaction and not the properties of real springs and whatever objects are attached to them.
Therefore, we can define the difference of elastic potential energy for a spring force as the negative of the work done by the
spring force in this equation, before we consider systems that embody this type of force. Thus,

(8.6)ΔU = −WAB = 1
2k(xB

2 − xA
2 ),

where the object travels from point A to point B. The potential energy function corresponding to this difference is

(8.7)U(x) = 1
2kx

2 + const.

If the spring force is the only force acting, it is simplest to take the zero of potential energy at x = 0 , when the spring is at

its unstretched length. Then, the constant is Equation 8.7 is zero. (Other choices may be more convenient if other forces
are acting.)

Example 8.3

Spring Potential Energy

A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm.
(a) How much elastic potential energy does the spring contribute when its length is 23 cm? (b) How much more
potential energy does it contribute if its length increases to 26 cm?

Strategy

When the spring is at its unstretched length, it contributes nothing to the potential energy of the system, so we
can use Equation 8.7 with the constant equal to zero. The value of x is the length minus the unstretched length.
When the spring is expanded, the spring’s displacement or difference between its relaxed length and stretched
length should be used for the x-value in calculating the potential energy of the spring.

Solution
a. The displacement of the spring is x = 23 cm − 20 cm = 3 cm , so the contributed potential energy is
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U = 1
2kx

2 = 1
2(4 N/cm)(3 cm)2 = 0.18 J .

b. When the spring’s displacement is x = 26 cm − 20 cm = 6 cm , the potential energy is

U = 1
2kx

2 = 1
2(4 N/cm)(6 cm)2 = 0.72 J , which is a 0.54-J increase over the amount in part (a).

Significance

Calculating the elastic potential energy and potential energy differences from Equation 8.7 involves solving for

the potential energies based on the given lengths of the spring. Since U depends on x2 , the potential energy for a

compression (negative x) is the same as for an extension of equal magnitude.

Check Your Understanding When the length of the spring in Example 8.3 changes from an initial
value of 22.0 cm to a final value, the elastic potential energy it contributes changes by −0.0800 J. Find the

final length.

Gravitational and elastic potential energy

A simple system embodying both gravitational and elastic types of potential energy is a one-dimensional, vertical mass-
spring system. This consists of a massive particle (or block), hung from one end of a perfectly elastic, massless spring, the
other end of which is fixed, as illustrated in Figure 8.5.

Figure 8.5 A vertical mass-spring system, with the y-axis pointing upwards. The mass is initially at an
equilibrium position and pulled downward to ypull. An oscillation begins, centered at the equilibrium

position.

First, let’s consider the potential energy of the system. Assuming the spring is massless, the system of the block and Earth
gains and loses potential energy. We need to define the constant in the potential energy function of Equation 8.5. Often,
the ground is a suitable choice for when the gravitational potential energy is zero; however, in this case, the lowest point
or when h = 0 is a convenient location for zero gravitational potential energy. Note that this choice is arbitrary, and the

problem can be solved correctly even if another choice is picked.

We must also define the elastic potential energy of the system and the corresponding constant, as detailed in Equation 8.7.
The equilibrium location is the most suitable mathematically to choose for where the potential energy of the spring is zero.

Therefore, based on this convention, each potential energy and kinetic energy can be written out for three critical points of
the system: (1) the lowest pulled point, (2) the equilibrium position of the spring, and (3) the highest point achieved. We
note that the total energy of the system is conserved, so any total energy in this chart could be matched up to solve for an
unknown quantity. The results are shown in Table 8.1.
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Gravitational P.E. Elastic P.E. Kinetic E.

(3) Highest Point 2mgypull 1
2ky

2
pull

0

(2) Equilibrium mgypull 0 1
2mv

2

(1) Lowest Point 0 1
2ky

2
pull

0

Table 8.1 Components of Energy in a Vertical Mass-Spring System

Figure 8.6 A bungee jumper transforms gravitational potential energy at the start of the jump
into elastic potential energy at the bottom of the jump.

Example 8.4

Potential Energy of a Vertical Mass-Spring System

A block weighing 12 N is hung from a spring with a spring constant of 6.0 N/m , as shown in Figure 8.5. The

block is pulled down an additional 5.0 cm from its equilibrium position and released. (a) What is the difference

in just the spring potential energy, from an initial equilibrium position to its pulled-down position? (b) What is
the difference in just the gravitational potential energy from its initial equilibrium position to its pulled-down
position? (c) What is the kinetic energy of the block as it passes through the equilibrium position from its pulled-
down position?

Strategy

In parts (a) and (b), we want to find a difference in potential energy, so we can use Equation 8.6 and Equation
8.4, respectively. Each of these expressions takes into consideration the change in the energy relative to another
position, further emphasizing that potential energy is calculated with a reference or second point in mind. By
choosing the conventions of the lowest point in the diagram where the gravitational potential energy is zero and
the equilibrium position of the spring where the elastic potential energy is zero, these differences in energies can
now be calculated. In part (c), we take a look at the differences between the two potential energies. The difference
between the two results in kinetic energy, since there is no friction or drag in this system that can take energy
from the system.
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Solution
a. Since the gravitational potential energy is zero at the lowest point, the change in gravitational potential

energy is

ΔUgrav = mgy − 0 = (12 N)(5.0 cm) = 0.60 J.

b. The equilibrium position of the spring is defined as zero potential energy. Therefore, the change in elastic
potential energy is

ΔUelastic = 0 − 1
2kypull

2 = −⎛
⎝
1
2

⎞
⎠
⎛
⎝6.0N

m
⎞
⎠(5.0 cm)2 = −0.75 J.

c. The block started off being pulled downward with a relative potential energy of 0.75 J. The gravitational

potential energy required to rise 5.0 cm is 0.60 J . The energy remaining at this equilibrium position must

be kinetic energy. We can solve for this gain in kinetic energy from Equation 8.2,

ΔK = −(ΔUelastic + ΔUgrav) = −(−0.75 J + 0.60 J) = 0.15 J.

Significance

Even though the potential energies are relative to a chosen zero location, the solutions to this problem would be
the same if the zero energy points were chosen at different locations.

Check Your Understanding Suppose the mass in Example 8.4 is in equilibrium, and you pull it down
another 3.0 cm, making the pulled-down distance a total of 8.0 cm. The elastic potential energy of the spring

increases, because you’re stretching it more, but the gravitational potential energy of the mass decreases,
because you’re lowering it. Does the total potential energy increase, decrease, or remain the same?

View this simulation (https://openstaxcollege.org/l/21conenerskat) to learn about conservation of energy
with a skater! Build tracks, ramps and jumps for the skater and view the kinetic energy, potential energy and friction
as he moves. You can also take the skater to different planets or even space!

A sample chart of a variety of energies is shown in Table 8.2 to give you an idea about typical energy values associated
with certain events. Some of these are calculated using kinetic energy, whereas others are calculated by using quantities
found in a form of potential energy that may not have been discussed at this point.

Object/phenomenon Energy in joules

Big Bang 1068

Annual world energy use 4.0 × 1020

Large fusion bomb (9 megaton) 3.8 × 1016

Hiroshima-size fission bomb (10 kiloton) 4.2 × 1013

1 barrel crude oil 5.9 × 109

1 ton TNT 4.2 × 109

1 gallon of gasoline 1.2 × 108

Daily adult food intake (recommended) 1.2 × 107

1000-kg car at 90 km/h 3.1 × 105

Tennis ball at 100 km/h 22

Table 8.2 Energy of Various Objects and Phenomena
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Object/phenomenon Energy in joules

Mosquito ⎛
⎝10−2 g at 0.5 m/s⎞

⎠ 1.3 × 10−6

Single electron in a TV tube beam 4.0 × 10−15

Energy to break one DNA strand 10−19

Table 8.2 Energy of Various Objects and Phenomena

8.2 | Conservative and Non-Conservative Forces

Learning Objectives

By the end of this section, you will be able to:

• Characterize a conservative force in several different ways

• Specify mathematical conditions that must be satisfied by a conservative force and its
components

• Relate the conservative force between particles of a system to the potential energy of the
system

• Calculate the components of a conservative force in various cases

In Potential Energy and Conservation of Energy, any transition between kinetic and potential energy conserved the
total energy of the system. This was path independent, meaning that we can start and stop at any two points in the problem,
and the total energy of the system—kinetic plus potential—at these points are equal to each other. This is characteristic of
a conservative force. We dealt with conservative forces in the preceding section, such as the gravitational force and spring
force. When comparing the motion of the football in Figure 8.2, the total energy of the system never changes, even though
the gravitational potential energy of the football increases, as the ball rises relative to ground and falls back to the initial
gravitational potential energy when the football player catches the ball. Non-conservative forces are dissipative forces such
as friction or air resistance. These forces take energy away from the system as the system progresses, energy that you can’t
get back. These forces are path dependent; therefore it matters where the object starts and stops.

Conservative Force

The work done by a conservative force is independent of the path; in other words, the work done by a conservative
force is the same for any path connecting two points:

(8.8)WAB, path-1 = ∫
AB, path-1

F→ cons · d r→ = WAB, path-2 = ∫
AB, path-2

F→ cons · d r→ .

The work done by a non-conservative force depends on the path taken.

Equivalently, a force is conservative if the work it does around any closed path is zero:

(8.9)Wclosed path = ∮ E→ cons · d r→ = 0.

[In Equation 8.9, we use the notation of a circle in the middle of the integral sign for a line integral over a closed path, a
notation found in most physics and engineering texts.] Equation 8.8 and Equation 8.9 are equivalent because any closed
path is the sum of two paths: the first going from A to B, and the second going from B to A. The work done going along a
path from B to A is the negative of the work done going along the same path from A to B, where A and B are any two points
on the closed path:
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0 = ∫ F→ cons · d r→ = ∫
AB, path-1

F→ cons · d r→ + ∫
BA, path-2

F→ cons · d r→

= ∫
AB, path-1

F→ cons · d r→ − ∫
AB, path-2

F→ cons · d r→ = 0.

You might ask how we go about proving whether or not a force is conservative, since the definitions involve any and all
paths from A to B, or any and all closed paths, but to do the integral for the work, you have to choose a particular path. One

answer is that the work done is independent of path if the infinitesimal work F→ · d r→ is an exact differential, the way

the infinitesimal net work was equal to the exact differential of the kinetic energy, dWnet = m v→ · d v→ = d1
2mv2,

when we derived the work-energy theorem in Work-Energy Theorem. There are mathematical conditions that you
can use to test whether the infinitesimal work done by a force is an exact differential, and the force is conservative.
These conditions only involve differentiation and are thus relatively easy to apply. In two dimensions, the condition for

F→ · d r→ = Fx dx + Fydy to be an exact differential is

(8.10)dFx
dy =

dFy
dx .

You may recall that the work done by the force in Example 7.4 depended on the path. For that force,

Fx = (5 N/m)y and Fy = (10 N/m)x.

Therefore,

⎛
⎝dFx /dy⎞

⎠ = 5 N/m ≠ ⎛
⎝dFy /dx⎞

⎠ = 10 N/m,

which indicates it is a non-conservative force. Can you see what you could change to make it a conservative force?

Figure 8.7 A grinding wheel applies a non-conservative force,
because the work done depends on how many rotations the
wheel makes, so it is path-dependent.

Example 8.5

Conservative or Not?

Which of the following two-dimensional forces are conservative and which are not? Assume a and b are constants
with appropriate units:
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(a) axy3 i
^

+ ayx3 j
^

, (b) a⎡
⎣

⎛
⎝y2 /x⎞

⎠ i
^

+ 2y ln(x/b) j
^⎤

⎦, (c)
ax i

^
+ ay j

^

x2 + y2

Strategy

Apply the condition stated in Equation 8.10, namely, using the derivatives of the components of each force
indicated. If the derivative of the y-component of the force with respect to x is equal to the derivative of the
x-component of the force with respect to y, the force is a conservative force, which means the path taken for
potential energy or work calculations always yields the same results.

Solution

a.
dFx
dy =

d⎛
⎝axy

3⎞
⎠

dy = 3axy2 and
dFy
dx =

d⎛
⎝ayx

3⎞
⎠

dx = 3ayx2 , so this force is non-conservative.

b.
dFx
dy =

d⎛
⎝ay2 /x⎞

⎠
dy = 2ay

x and
dFy
dx = d⎛

⎝2ay ln(x/b)⎞
⎠

dx = 2ay
x , so this force is conservative.

c.
dFx
dy =

d⎛
⎝ax/⎛

⎝x2 + y2⎞
⎠
⎞
⎠

dy = − ax⎛
⎝2y⎞

⎠

⎛
⎝x2 + y2⎞

⎠
2 =

dFy
dx =

d⎛
⎝ay/⎛

⎝x2 + y2⎞
⎠
⎞
⎠

dx , again conservative.

Significance

The conditions in Equation 8.10 are derivatives as functions of a single variable; in three dimensions, similar
conditions exist that involve more derivatives.

Check Your Understanding A two-dimensional, conservative force is zero on the x- and y-axes, and

satisfies the condition ⎛
⎝dFx /dy⎞

⎠ = ⎛
⎝dFy /dx⎞

⎠ = ⎛
⎝4 N/m3⎞

⎠xy . What is the magnitude of the force at the point

x = y = 1 m?

Before leaving this section, we note that non-conservative forces do not have potential energy associated with them because
the energy is lost to the system and can’t be turned into useful work later. So there is always a conservative force associated
with every potential energy. We have seen that potential energy is defined in relation to the work done by conservative
forces. That relation, Equation 8.1, involved an integral for the work; starting with the force and displacement, you
integrated to get the work and the change in potential energy. However, integration is the inverse operation of differentiation;
you could equally well have started with the potential energy and taken its derivative, with respect to displacement, to get
the force. The infinitesimal increment of potential energy is the dot product of the force and the infinitesimal displacement,

dU = − F→ · d l→ = −Fldl.

Here, we chose to represent the displacement in an arbitrary direction by d l→ , so as not to be restricted to any particular

coordinate direction. We also expressed the dot product in terms of the magnitude of the infinitesimal displacement and the
component of the force in its direction. Both these quantities are scalars, so you can divide by dl to get

(8.11)Fl = − dU
dl .

This equation gives the relation between force and the potential energy associated with it. In words, the component of a
conservative force, in a particular direction, equals the negative of the derivative of the corresponding potential energy,
with respect to a displacement in that direction. For one-dimensional motion, say along the x-axis, Equation 8.11 give the

entire vector force, F– = Fx i
^

= − ∂U
∂ x i

^
.
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8.6

In two dimensions,

F– = Fx i
^

+ Fy j
^

= −⎛
⎝
∂U
∂ x

⎞
⎠ i
^

− ⎛
⎝
∂U
∂ y

⎞
⎠ j

^
.

From this equation, you can see why Equation 8.11 is the condition for the work to be an exact differential, in terms of the
derivatives of the components of the force. In general, a partial derivative notation is used. If a function has many variables
in it, the derivative is taken only of the variable the partial derivative specifies. The other variables are held constant. In
three dimensions, you add another term for the z-component, and the result is that the force is the negative of the gradient
of the potential energy. However, we won’t be looking at three-dimensional examples just yet.

Example 8.6

Force due to a Quartic Potential Energy

The potential energy for a particle undergoing one-dimensional motion along the x-axis is

U(x) = 1
4cx

4,

where c = 8 N/m3. Its total energy at x = 0 is 2 J, and it is not subject to any non-conservative forces. Find (a)

the positions where its kinetic energy is zero and (b) the forces at those positions.

Strategy

(a) We can find the positions where K = 0, so the potential energy equals the total energy of the given system.

(b) Using Equation 8.11, we can find the force evaluated at the positions found from the previous part, since
the mechanical energy is conserved.

Solution
a. The total energy of the system of 2 J equals the quartic elastic energy as given in the problem,

2 J = 1
4

⎛
⎝8 N/m3⎞

⎠xf
4.

Solving for xf results in xf = ±1 m.

b. From Equation 8.11,

Fx = −dU/dx = −cx3.

Thus, evaluating the force at ±1 m , we get

F→ = −(8 N/m3)(±1 m)3 i
^

= ±8 N i
^

.

At both positions, the magnitude of the forces is 8 N and the directions are toward the origin, since this is
the potential energy for a restoring force.

Significance

Finding the force from the potential energy is mathematically easier than finding the potential energy from the
force, because differentiating a function is generally easier than integrating one.

Check Your Understanding Find the forces on the particle in Example 8.6 when its kinetic energy is
1.0 J at x = 0.
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8.3 | Conservation of Energy

Learning Objectives

By the end of this section, you will be able to:

• Formulate the principle of conservation of mechanical energy, with or without the presence of
non-conservative forces

• Use the conservation of mechanical energy to calculate various properties of simple systems

In this section, we elaborate and extend the result we derived in Potential Energy of a System, where we re-wrote
the work-energy theorem in terms of the change in the kinetic and potential energies of a particle. This will lead us to a
discussion of the important principle of the conservation of mechanical energy. As you continue to examine other topics in
physics, in later chapters of this book, you will see how this conservation law is generalized to encompass other types of
energy and energy transfers. The last section of this chapter provides a preview.

The terms ‘conserved quantity’ and ‘conservation law’ have specific, scientific meanings in physics, which are different
from the everyday meanings associated with the use of these words. (The same comment is also true about the scientific and
everyday uses of the word ‘work.’) In everyday usage, you could conserve water by not using it, or by using less of it, or
by re-using it. Water is composed of molecules consisting of two atoms of hydrogen and one of oxygen. Bring these atoms
together to form a molecule and you create water; dissociate the atoms in such a molecule and you destroy water. However,
in scientific usage, a conserved quantity for a system stays constant, changes by a definite amount that is transferred to
other systems, and/or is converted into other forms of that quantity. A conserved quantity, in the scientific sense, can be
transformed, but not strictly created or destroyed. Thus, there is no physical law of conservation of water.

Systems with a Single Particle or Object
We first consider a system with a single particle or object. Returning to our development of Equation 8.2, recall that we
first separated all the forces acting on a particle into conservative and non-conservative types, and wrote the work done
by each type of force as a separate term in the work-energy theorem. We then replaced the work done by the conservative
forces by the change in the potential energy of the particle, combining it with the change in the particle’s kinetic energy
to get Equation 8.2. Now, we write this equation without the middle step and define the sum of the kinetic and potential
energies, K + U = E; to be the mechanical energy of the particle.

Conservation of Energy

The mechanical energy E of a particle stays constant unless forces outside the system or non-conservative forces do
work on it, in which case, the change in the mechanical energy is equal to the work done by the non-conservative
forces:

(8.12)Wnc, AB = Δ(K + U)AB = ΔEAB.

This statement expresses the concept of energy conservation for a classical particle as long as there is no non-conservative
work. Recall that a classical particle is just a point mass, is nonrelativistic, and obeys Newton’s laws of motion. In
Relativity (http://cnx.org/content/m58555/latest/) , we will see that conservation of energy still applies to a non-
classical particle, but for that to happen, we have to make a slight adjustment to the definition of energy.

It is sometimes convenient to separate the case where the work done by non-conservative forces is zero, either because no
such forces are assumed present, or, like the normal force, they do zero work when the motion is parallel to the surface.
Then

(8.13)0 = Wnc, AB = Δ(K + U)AB = ΔEAB.

In this case, the conservation of mechanical energy can be expressed as follows: The mechanical energy of a particle
does not change if all the non-conservative forces that may act on it do no work. Understanding the concept of energy
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conservation is the important thing, not the particular equation you use to express it.

Problem-Solving Strategy: Conservation of Energy

1. Identify the body or bodies to be studied (the system). Often, in applications of the principle of mechanical
energy conservation, we study more than one body at the same time.

2. Identify all forces acting on the body or bodies.

3. Determine whether each force that does work is conservative. If a non-conservative force (e.g., friction) is
doing work, then mechanical energy is not conserved. The system must then be analyzed with non-conservative
work, Equation 8.13.

4. For every force that does work, choose a reference point and determine the potential energy function for the
force. The reference points for the various potential energies do not have to be at the same location.

5. Apply the principle of mechanical energy conservation by setting the sum of the kinetic energies and potential
energies equal at every point of interest.

Example 8.7

Simple Pendulum

A particle of mass m is hung from the ceiling by a massless string of length 1.0 m, as shown in Figure 8.8.
The particle is released from rest, when the angle between the string and the downward vertical direction is 30°.
What is its speed when it reaches the lowest point of its arc?

Figure 8.8 A particle hung from a string constitutes a simple
pendulum. It is shown when released from rest, along with some
distances used in analyzing the motion.

Strategy

Using our problem-solving strategy, the first step is to define that we are interested in the particle-Earth system.
Second, only the gravitational force is acting on the particle, which is conservative (step 3). We neglect air
resistance in the problem, and no work is done by the string tension, which is perpendicular to the arc of
the motion. Therefore, the mechanical energy of the system is conserved, as represented by Equation 8.13,
0 = Δ(K + U) . Because the particle starts from rest, the increase in the kinetic energy is just the kinetic energy

at the lowest point. This increase in kinetic energy equals the decrease in the gravitational potential energy, which
we can calculate from the geometry. In step 4, we choose a reference point for zero gravitational potential energy
to be at the lowest vertical point the particle achieves, which is mid-swing. Lastly, in step 5, we set the sum of
energies at the highest point (initial) of the swing to the lowest point (final) of the swing to ultimately solve for
the final speed.

Chapter 8 | Potential Energy and Conservation of Energy 373



Solution

We are neglecting non-conservative forces, so we write the energy conservation formula relating the particle at
the highest point (initial) and the lowest point in the swing (final) as

Ki + Ui = Kf + Uf.

Since the particle is released from rest, the initial kinetic energy is zero. At the lowest point, we define the
gravitational potential energy to be zero. Therefore our conservation of energy formula reduces to

0 + mgh = 1
2mv

2 + 0

v = 2gh.

The vertical height of the particle is not given directly in the problem. This can be solved for by using
trigonometry and two givens: the length of the pendulum and the angle through which the particle is vertically
pulled up. Looking at the diagram, the vertical dashed line is the length of the pendulum string. The vertical
height is labeled h. The other partial length of the vertical string can be calculated with trigonometry. That piece
is solved for by

cos θ = x/L, x = L cos θ.

Therefore, by looking at the two parts of the string, we can solve for the height h,

x + h = L
L cos θ + h = L

h = L − L cos θ = L(1 − cos θ).

We substitute this height into the previous expression solved for speed to calculate our result:

v = 2gL(1 − cos θ) = 2⎛
⎝9.8 m/s2⎞

⎠(1 m)(1 − cos 30°) = 1.62 m/s.

Significance

We found the speed directly from the conservation of mechanical energy, without having to solve the differential
equation for the motion of a pendulum (see Oscillations). We can approach this problem in terms of bar graphs
of total energy. Initially, the particle has all potential energy, being at the highest point, and no kinetic energy.
When the particle crosses the lowest point at the bottom of the swing, the energy moves from the potential energy
column to the kinetic energy column. Therefore, we can imagine a progression of this transfer as the particle
moves between its highest point, lowest point of the swing, and back to the highest point (Figure 8.9). As the
particle travels from the lowest point in the swing to the highest point on the far right hand side of the diagram,
the energy bars go in reverse order from (c) to (b) to (a).

Figure 8.9 Bar graphs representing the total energy (E), potential energy (U), and kinetic energy (K) of
the particle in different positions. (a) The total energy of the system equals the potential energy and the
kinetic energy is zero, which is found at the highest point the particle reaches. (b) The particle is midway
between the highest and lowest point, so the kinetic energy plus potential energy bar graphs equal the total
energy. (c) The particle is at the lowest point of the swing, so the kinetic energy bar graph is the highest and
equal to the total energy of the system.
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8.7 Check Your Understanding How high above the bottom of its arc is the particle in the simple pendulum
above, when its speed is 0.81 m/s?

Example 8.8

Air Resistance on a Falling Object

A helicopter is hovering at an altitude of 1 km when a panel from its underside breaks loose and plummets to

the ground (Figure 8.10). The mass of the panel is 15 kg, and it hits the ground with a speed of 45 m/s . How

much mechanical energy was dissipated by air resistance during the panel’s descent?

Figure 8.10 A helicopter loses a panel that falls until it reaches terminal velocity of 45
m/s. How much did air resistance contribute to the dissipation of energy in this problem?

Strategy

Step 1: Here only one body is being investigated.

Step 2: Gravitational force is acting on the panel, as well as air resistance, which is stated in the problem.

Step 3: Gravitational force is conservative; however, the non-conservative force of air resistance does negative
work on the falling panel, so we can use the conservation of mechanical energy, in the form expressed by
Equation 8.12, to find the energy dissipated. This energy is the magnitude of the work:

ΔEdiss = |Wnc,if| = |Δ(K + U)if|.
Step 4: The initial kinetic energy, at yi = 1 km, is zero. We set the gravitational potential energy to zero at

ground level out of convenience.

Step 5: The non-conservative work is set equal to the energies to solve for the work dissipated by air resistance.

Solution

The mechanical energy dissipated by air resistance is the algebraic sum of the gain in the kinetic energy and loss
in potential energy. Therefore the calculation of this energy is
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ΔEdiss = |Kf − Ki + Uf − Ui|
= |12 ⎛

⎝15 kg⎞
⎠(45 m/s)2 − 0 + 0 − ⎛

⎝15 kg⎞
⎠
⎛
⎝9.8 m/s2⎞

⎠(1000 m)| = 130 kJ.

Significance

Most of the initial mechanical energy of the panel ⎛
⎝Ui

⎞
⎠ , 147 kJ, was lost to air resistance. Notice that we were

able to calculate the energy dissipated without knowing what the force of air resistance was, only that it was
dissipative.

Check Your Understanding You probably recall that, neglecting air resistance, if you throw a projectile
straight up, the time it takes to reach its maximum height equals the time it takes to fall from the maximum
height back to the starting height. Suppose you cannot neglect air resistance, as in Example 8.8. Is the time the
projectile takes to go up (a) greater than, (b) less than, or (c) equal to the time it takes to come back down?
Explain.

In these examples, we were able to use conservation of energy to calculate the speed of a particle just at particular points
in its motion. But the method of analyzing particle motion, starting from energy conservation, is more powerful than that.
More advanced treatments of the theory of mechanics allow you to calculate the full time dependence of a particle’s motion,
for a given potential energy. In fact, it is often the case that a better model for particle motion is provided by the form of
its kinetic and potential energies, rather than an equation for force acting on it. (This is especially true for the quantum
mechanical description of particles like electrons or atoms.)

We can illustrate some of the simplest features of this energy-based approach by considering a particle in one-dimensional
motion, with potential energy U(x) and no non-conservative interactions present. Equation 8.12 and the definition of
velocity require

K = 1
2mv

2 = E − U(x)

v = dx
dt = 2(E − U(x))

m .

Separate the variables x and t and integrate, from an initial time t = 0 to an arbitrary time, to get

(8.14)
t = ∫

0

t
dt = ⌠

⌡x0

x
dt

2⎡
⎣E − U(x)⎤

⎦/m
.

If you can do the integral in Equation 8.14, then you can solve for x as a function of t.

Example 8.9

Constant Acceleration

Use the potential energy U(x) = −E⎛
⎝x/x0

⎞
⎠, for E > 0, in Equation 8.14 to find the position x of a particle

as a function of time t.

Strategy

Since we know how the potential energy changes as a function of x, we can substitute for U(x) in Equation

8.14, integrate, and then solve for x. This results in an expression of x as a function of time with constants of
energy E, mass m, and the initial position x0.

Solution

Following the first two suggested steps in the above strategy,
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8.9

t = ⌠
⌡
x0

x

dx
⎛
⎝2E/mx0

⎞
⎠(x0 − x)

= 1
⎛
⎝2E/mx0

⎞
⎠
|−2 (x0 − x)|x0

x = − 2 (x0 − x)
⎛
⎝2E/mx0

⎞
⎠

.

Solving for the position, we obtain x(t) = x0 − 1
2

⎛
⎝E/mx0

⎞
⎠t2 .

Significance

The position as a function of time, for this potential, represents one-dimensional motion with constant
acceleration, a = ⎛

⎝E/mx0
⎞
⎠, starting at rest from position x0. This is not so surprising, since this is a potential

energy for a constant force, F = −dU/dx = E/x0, and a = F/m.

Check Your Understanding What potential energy U(x) can you substitute in Equation 8.13 that will

result in motion with constant velocity of 2 m/s for a particle of mass 1 kg and mechanical energy 1 J?

We will look at another more physically appropriate example of the use of Equation 8.13 after we have explored some
further implications that can be drawn from the functional form of a particle’s potential energy.

Systems with Several Particles or Objects
Systems generally consist of more than one particle or object. However, the conservation of mechanical energy, in one
of the forms in Equation 8.12 or Equation 8.13, is a fundamental law of physics and applies to any system. You just
have to include the kinetic and potential energies of all the particles, and the work done by all the non-conservative forces
acting on them. Until you learn more about the dynamics of systems composed of many particles, in Linear Momentum
and Collisions, Fixed-Axis Rotation, and Angular Momentum, it is better to postpone discussing the application of
energy conservation to then.

8.4 | Potential Energy Diagrams and Stability

Learning Objectives

By the end of this section, you will be able to:

• Create and interpret graphs of potential energy

• Explain the connection between stability and potential energy

Often, you can get a good deal of useful information about the dynamical behavior of a mechanical system just by
interpreting a graph of its potential energy as a function of position, called a potential energy diagram. This is most easily
accomplished for a one-dimensional system, whose potential energy can be plotted in one two-dimensional graph—for
example, U(x) versus x—on a piece of paper or a computer program. For systems whose motion is in more than one
dimension, the motion needs to be studied in three-dimensional space. We will simplify our procedure for one-dimensional
motion only.

First, let’s look at an object, freely falling vertically, near the surface of Earth, in the absence of air resistance. The
mechanical energy of the object is conserved, E = K + U, and the potential energy, with respect to zero at ground level,

is U(y) = mgy, which is a straight line through the origin with slope mg . In the graph shown in Figure 8.11, the x-axis

is the height above the ground y and the y-axis is the object’s energy.
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Figure 8.11 The potential energy graph for an object in vertical
free fall, with various quantities indicated.

The line at energy E represents the constant mechanical energy of the object, whereas the kinetic and potential energies,
KA and UA, are indicated at a particular height yA. You can see how the total energy is divided between kinetic and

potential energy as the object’s height changes. Since kinetic energy can never be negative, there is a maximum potential
energy and a maximum height, which an object with the given total energy cannot exceed:

K = E − U ≥ 0,
U ≤ E.

If we use the gravitational potential energy reference point of zero at y0, we can rewrite the gravitational potential energy

U as mgy. Solving for y results in

y ≤ E/mg = ymax.

We note in this expression that the quantity of the total energy divided by the weight (mg) is located at the maximum height
of the particle, or ymax. At the maximum height, the kinetic energy and the speed are zero, so if the object were initially

traveling upward, its velocity would go through zero there, and ymax would be a turning point in the motion. At ground

level, y0 = 0 , the potential energy is zero, and the kinetic energy and the speed are maximum:

U0 = 0 = E − K0,

E = K0 = 1
2mv0

2,

v0 = ± 2E/m.

The maximum speed ±v0 gives the initial velocity necessary to reach ymax, the maximum height, and −v0 represents

the final velocity, after falling from ymax. You can read all this information, and more, from the potential energy diagram

we have shown.

Consider a mass-spring system on a frictionless, stationary, horizontal surface, so that gravity and the normal contact force
do no work and can be ignored (Figure 8.12). This is like a one-dimensional system, whose mechanical energy E is a
constant and whose potential energy, with respect to zero energy at zero displacement from the spring’s unstretched length,

x = 0, is U(x) = 1
2kx

2 .
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Figure 8.12 (a) A glider between springs on an air track is an example of a horizontal mass-spring system. (b) The
potential energy diagram for this system, with various quantities indicated.

You can read off the same type of information from the potential energy diagram in this case, as in the case for the body in
vertical free fall, but since the spring potential energy describes a variable force, you can learn more from this graph. As for
the object in vertical free fall, you can deduce the physically allowable range of motion and the maximum values of distance
and speed, from the limits on the kinetic energy, 0 ≤ K ≤ E. Therefore, K = 0 and U = E at a turning point, of which

there are two for the elastic spring potential energy,

xmax = ± 2E/k.

The glider’s motion is confined to the region between the turning points, −xmax ≤ x ≤ xmax. This is true for any (positive)

value of E because the potential energy is unbounded with respect to x. For this reason, as well as the shape of the potential
energy curve, U(x) is called an infinite potential well. At the bottom of the potential well, x = 0, U = 0 and the kinetic

energy is a maximum, K = E, so vmax = ± 2E/m.

However, from the slope of this potential energy curve, you can also deduce information about the force on the glider and
its acceleration. We saw earlier that the negative of the slope of the potential energy is the spring force, which in this case
is also the net force, and thus is proportional to the acceleration. When x = 0 , the slope, the force, and the acceleration are

all zero, so this is an equilibrium point. The negative of the slope, on either side of the equilibrium point, gives a force
pointing back to the equilibrium point, F = ±kx, so the equilibrium is termed stable and the force is called a restoring

force. This implies that U(x) has a relative minimum there. If the force on either side of an equilibrium point has a direction
opposite from that direction of position change, the equilibrium is termed unstable, and this implies that U(x) has a relative
maximum there.

Example 8.10

Quartic and Quadratic Potential Energy Diagram

The potential energy for a particle undergoing one-dimensional motion along the x-axis is U(x) = 2⎛
⎝x4 − x2⎞

⎠,

where U is in joules and x is in meters. The particle is not subject to any non-conservative forces and its
mechanical energy is constant at E = −0.25 J . (a) Is the motion of the particle confined to any regions on the

x-axis, and if so, what are they? (b) Are there any equilibrium points, and if so, where are they and are they stable
or unstable?

Strategy

First, we need to graph the potential energy as a function of x. The function is zero at the origin, becomes negative

as x increases in the positive or negative directions ( x2 is larger than x4 for x < 1 ), and then becomes positive

at sufficiently large |x| . Your graph should look like a double potential well, with the zeros determined by solving
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the equation U(x) = 0 , and the extremes determined by examining the first and second derivatives of U(x), as

shown in Figure 8.13.

Figure 8.13 The potential energy graph for a one-dimensional, quartic and quadratic
potential energy, with various quantities indicated.

You can find the values of (a) the allowed regions along the x-axis, for the given value of the mechanical energy,
from the condition that the kinetic energy can’t be negative, and (b) the equilibrium points and their stability
from the properties of the force (stable for a relative minimum and unstable for a relative maximum of potential
energy).

You can just eyeball the graph to reach qualitative answers to the questions in this example. That, after all, is
the value of potential energy diagrams. You can see that there are two allowed regions for the motion (E > U)

and three equilibrium points (slope dU/dx = 0), of which the central one is unstable ⎛
⎝d2U/dx2 < 0⎞

⎠, and the

other two are stable ⎛
⎝d2U/dx2 > 0⎞

⎠.

Solution
a. To find the allowed regions for x, we use the condition

K = E − U = − 1
4 − 2⎛

⎝x4 − x2⎞
⎠ ≥ 0.

If we complete the square in x2 , this condition simplifies to 2⎛
⎝x

2 − 1
2

⎞
⎠
2

≤ 1
4, which we can solve to

obtain

1
2 − 1

8 ≤ x2 ≤ 1
2 + 1

8.

This represents two allowed regions, x p ≤ x ≤ xR and −xR ≤ x ≤ − x p, where x p = 0.38 and

xR = 0.92 (in meters).

b. To find the equilibrium points, we solve the equation
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dU/dx = 8x3 − 4x = 0

and find x = 0 and x = ±xQ , where xQ = 1/ 2 = 0.707 (meters). The second derivative

d2U/dx2 = 24x2 − 4

is negative at x = 0 , so that position is a relative maximum and the equilibrium there is unstable. The

second derivative is positive at x = ±xQ , so these positions are relative minima and represent stable

equilibria.

Significance

The particle in this example can oscillate in the allowed region about either of the two stable equilibrium points
we found, but it does not have enough energy to escape from whichever potential well it happens to initially be in.
The conservation of mechanical energy and the relations between kinetic energy and speed, and potential energy
and force, enable you to deduce much information about the qualitative behavior of the motion of a particle, as
well as some quantitative information, from a graph of its potential energy.

Check Your Understanding Repeat Example 8.10 when the particle’s mechanical energy is
+0.25 J.

Before ending this section, let’s practice applying the method based on the potential energy of a particle to find its position
as a function of time, for the one-dimensional, mass-spring system considered earlier in this section.

Example 8.11

Sinusoidal Oscillations

Find x(t) for a particle moving with a constant mechanical energy E > 0 and a potential energy U(x) = 1
2kx

2 ,

when the particle starts from rest at time t = 0 .

Strategy

We follow the same steps as we did in Example 8.9. Substitute the potential energy U into Equation 8.14 and
factor out the constants, like m or k. Integrate the function and solve the resulting expression for position, which
is now a function of time.

Solution

Substitute the potential energy in Equation 8.14 and integrate using an integral solver found on a web search:

t = ⌠
⌡
x0

x

dx
(k/m)⎡

⎣(2E/k) − x2⎤
⎦

= m
k

⎡
⎣sin−1 ⎛

⎝
x

2E/k
⎞
⎠ − sin−1 ⎛

⎝
x0

2E/k
⎞
⎠
⎤
⎦.

From the initial conditions at t = 0, the initial kinetic energy is zero and the initial potential energy is

1
2kx0

2 = E, from which you can see that x0 / (2E/k) = ±1 and sin−1 (±) = ±900. Now you can solve for

x:

x(t) = (2E/k) sin⎡
⎣
⎛
⎝ k/m⎞

⎠t ± 900⎤
⎦ = ± (2E/k) cos⎡

⎣
⎛
⎝ k/m⎞

⎠t⎤⎦.

Significance

A few paragraphs earlier, we referred to this mass-spring system as an example of a harmonic oscillator. Here, we
anticipate that a harmonic oscillator executes sinusoidal oscillations with a maximum displacement of (2E/k)
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(called the amplitude) and a rate of oscillation of (1/2π) k/m (called the frequency). Further discussions about

oscillations can be found in Oscillations.

Check Your Understanding Find x(t) for the mass-spring system in Example 8.11 if the particle

starts from x0 = 0 at t = 0. What is the particle’s initial velocity?

8.5 | Sources of Energy

Learning Objectives

By the end of this section, you will be able to:

• Describe energy transformations and conversions in general terms

• Explain what it means for an energy source to be renewable or nonrenewable

In this chapter, we have studied energy. We learned that energy can take different forms and can be transferred from one
form to another. You will find that energy is discussed in many everyday, as well as scientific, contexts, because it is
involved in all physical processes. It will also become apparent that many situations are best understood, or most easily
conceptualized, by considering energy. So far, no experimental results have contradicted the conservation of energy. In fact,
whenever measurements have appeared to conflict with energy conservation, new forms of energy have been discovered or
recognized in accordance with this principle.

What are some other forms of energy? Many of these are covered in later chapters (also see Figure 8.14), but let’s detail a
few here:

• Atoms and molecules inside all objects are in random motion. The internal kinetic energy from these random
motions is called thermal energy, because it is related to the temperature of the object. Note that thermal energy can
also be transferred from one place to another, not transformed or converted, by the familiar processes of conduction,
convection, and radiation. In this case, the energy is known as heat energy.

• Electrical energy is a common form that is converted to many other forms and does work in a wide range of practical
situations.

• Fuels, such as gasoline and food, have chemical energy, which is potential energy arising from their molecular
structure. Chemical energy can be converted into thermal energy by reactions like oxidation. Chemical reactions
can also produce electrical energy, such as in batteries. Electrical energy can, in turn, produce thermal energy and
light, such as in an electric heater or a light bulb.

• Light is just one kind of electromagnetic radiation, or radiant energy, which also includes radio, infrared, ultraviolet,
X-rays, and gamma rays. All bodies with thermal energy can radiate energy in electromagnetic waves.

• Nuclear energy comes from reactions and processes that convert measurable amounts of mass into energy. Nuclear
energy is transformed into radiant energy in the Sun, into thermal energy in the boilers of nuclear power plants, and
then into electrical energy in the generators of power plants. These and all other forms of energy can be transformed
into one another and, to a certain degree, can be converted into mechanical work.
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Figure 8.14 Energy that we use in society takes many forms, which be converted from one into another depending on the
process involved. We will study many of these forms of energy in later chapters in this text. (credit “sun”: EIT SOHO
Consortium, ESA, NASA; credit “solar panels”: “kjkolb”/Wikimedia Commons; credit “gas burner”: Steven Depolo)

The transformation of energy from one form into another happens all the time. The chemical energy in food is converted
into thermal energy through metabolism; light energy is converted into chemical energy through photosynthesis. Another
example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell produces electricity, which can be
used to run electric motors or heat water. In an example encompassing many steps, the chemical energy contained in coal is
converted into thermal energy as it burns in a furnace, to transform water into steam, in a boiler. Some of the thermal energy
in the steam is then converted into mechanical energy as it expands and spins a turbine, which is connected to a generator
to produce electrical energy. In these examples, not all of the initial energy is converted into the forms mentioned, because
some energy is always transferred to the environment.

Energy is an important element at all levels of society. We live in a very interdependent world, and access to adequate and
reliable energy resources is crucial for economic growth and for maintaining the quality of our lives. The principal energy
resources used in the world are shown in Figure 8.15. The figure distinguishes between two major types of energy sources:
renewable and non-renewable, and further divides each type into a few more specific kinds. Renewable sources are energy
sources that are replenished through naturally occurring, ongoing processes, on a time scale that is much shorter than the
anticipated lifetime of the civilization using the source. Non-renewable sources are depleted once some of the energy they
contain is extracted and converted into other kinds of energy. The natural processes by which non-renewable sources are
formed typically take place over geological time scales.
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Figure 8.15 World energy consumption by source; the percentage of renewables is increasing,
accounting for 19% in 2012.

Our most important non-renewable energy sources are fossil fuels, such as coal, petroleum, and natural gas. These account
for about 81% of the world’s energy consumption, as shown in the figure. Burning fossil fuels creates chemical reactions
that transform potential energy, in the molecular structures of the reactants, into thermal energy and products. This thermal
energy can be used to heat buildings or to operate steam-driven machinery. Internal combustion and jet engines convert
some of the energy of rapidly expanding gases, released from burning gasoline, into mechanical work. Electrical power
generation is mostly derived from transferring energy in expanding steam, via turbines, into mechanical work, which rotates
coils of wire in magnetic fields to generate electricity. Nuclear energy is the other non-renewable source shown in Figure
8.15 and supplies about 3% of the world’s consumption. Nuclear reactions release energy by transforming potential energy,
in the structure of nuclei, into thermal energy, analogous to energy release in chemical reactions. The thermal energy
obtained from nuclear reactions can be transferred and converted into other forms in the same ways that energy from fossil
fuels are used.

An unfortunate byproduct of relying on energy produced from the combustion of fossil fuels is the release of carbon dioxide
into the atmosphere and its contribution to global warming. Nuclear energy poses environmental problems as well, including
the safety and disposal of nuclear waste. Besides these important consequences, reserves of non-renewable sources of
energy are limited and, given the rapidly growing rate of world energy consumption, may not last for more than a few
hundred years. Considerable effort is going on to develop and expand the use of renewable sources of energy, involving a
significant percentage of the world’s physicists and engineers.

Four of the renewable energy sources listed in Figure 8.15—those using material from plants as fuel (biomass heat,
ethanol, biodiesel, and biomass electricity)—involve the same types of energy transformations and conversions as just
discussed for fossil and nuclear fuels. The other major types of renewable energy sources are hydropower, wind power,
geothermal power, and solar power.

Hydropower is produced by converting the gravitational potential energy of falling or flowing water into kinetic energy and
then into work to run electric generators or machinery. Converting the mechanical energy in ocean surface waves and tides
is in development. Wind power also converts kinetic energy into work, which can be used directly to generate electricity,
operate mills, and propel sailboats.

The interior of Earth has a great deal of thermal energy, part of which is left over from its original formation (gravitational
potential energy converted into thermal energy) and part of which is released from radioactive minerals (a form of natural
nuclear energy). It will take a very long time for this geothermal energy to escape into space, so people generally regard it
as a renewable source, when actually, it’s just inexhaustible on human time scales.

The source of solar power is energy carried by the electromagnetic waves radiated by the Sun. Most of this energy is
carried by visible light and infrared (heat) radiation. When suitable materials absorb electromagnetic waves, radiant energy
is converted into thermal energy, which can be used to heat water, or when concentrated, to make steam and generate
electricity (Figure 8.16). However, in another important physical process, known as the photoelectric effect, energetic
radiation impinging on certain materials is directly converted into electricity. Materials that do this are called photovoltaics
(PV in Figure 8.15). Some solar power systems use lenses or mirrors to concentrate the Sun’s rays, before converting their
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energy through photovoltaics, and these are qualified as CSP in Figure 8.15.

Figure 8.16 Solar cell arrays found in a sunny area converting the solar energy into stored
electrical energy. (credit: Sarah Swenty)

As we finish this chapter on energy and work, it is relevant to draw some distinctions between two sometimes
misunderstood terms in the area of energy use. As we mentioned earlier, the “law of conservation of energy” is a very useful
principle in analyzing physical processes. It cannot be proven from basic principles but is a very good bookkeeping device,
and no exceptions have ever been found. It states that the total amount of energy in an isolated system always remains
constant. Related to this principle, but remarkably different from it, is the important philosophy of energy conservation. This
concept has to do with seeking to decrease the amount of energy used by an individual or group through reducing activities
(e.g., turning down thermostats, diving fewer kilometers) and/or increasing conversion efficiencies in the performance of a
particular task, such as developing and using more efficient room heaters, cars that have greater miles-per-gallon ratings,
energy-efficient compact fluorescent lights, etc.

Since energy in an isolated system is not destroyed, created, or generated, you might wonder why we need to be concerned
about our energy resources, since energy is a conserved quantity. The problem is that the final result of most energy
transformations is waste heat, that is, work that has been “degraded” in the energy transformation. We will discuss this idea
in more detail in the chapters on thermodynamics.
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CHAPTER 8 REVIEW

KEY TERMS
force that does work independent of path

one that cannot be created or destroyed, but may be transformed between different forms of itself

total energy of an isolated system is constant

position where the assumed conservative, net force on a particle, given by the slope of its potential
energy curve, is zero

is the total differential of a function and requires the use of partial derivatives if the function involves
more than one dimension

sum of the kinetic and potential energies

force that does work that depends on path

energy source that is not renewable, but is depleted by human consumption

function of position, energy possessed by an object relative to the system considered

graph of a particle’s potential energy as a function of position

negative of the work done acting between two points in space

energy source that is replenished by natural processes, over human time scales

position where the velocity of a particle, in one-dimensional motion, changes sign

KEY EQUATIONS
Difference of potential energy ΔUAB = UB − UA = −WAB

Potential energy with respect to zero of
potential energy at

r→ 0 ΔU = U⎛
⎝ r→ ⎞

⎠ − U⎛
⎝ r→ 0

⎞
⎠

Gravitational potential energy near Earth’s surface U(y) = mgy + const.

Potential energy for an ideal spring U(x) = 1
2kx

2 + const.

Work done by conservative force over a closed path Wclosed path = ∮ E→ cons · d r→ = 0

Condition for conservative force in two dimensions
⎛
⎝
dFx
dy

⎞
⎠ = ⎛

⎝
dFy
dx

⎞
⎠

Conservative force is the negative derivative of potential energy Fl = − dU
dl

Conservation of energy with no
non-conservative forces

0 = Wnc, AB = Δ(K + U)AB = ΔEAB.

SUMMARY

8.1 Potential Energy of a System

• For a single-particle system, the difference of potential energy is the opposite of the work done by the forces acting
on the particle as it moves from one position to another.

• Since only differences of potential energy are physically meaningful, the zero of the potential energy function can
be chosen at a convenient location.
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• The potential energies for Earth’s constant gravity, near its surface, and for a Hooke’s law force are linear and
quadratic functions of position, respectively.

8.2 Conservative and Non-Conservative Forces

• A conservative force is one for which the work done is independent of path. Equivalently, a force is conservative if
the work done over any closed path is zero.

• A non-conservative force is one for which the work done depends on the path.

• For a conservative force, the infinitesimal work is an exact differential. This implies conditions on the derivatives
of the force’s components.

• The component of a conservative force, in a particular direction, equals the negative of the derivative of the potential
energy for that force, with respect to a displacement in that direction.

8.3 Conservation of Energy

• A conserved quantity is a physical property that stays constant regardless of the path taken.

• A form of the work-energy theorem says that the change in the mechanical energy of a particle equals the work done
on it by non-conservative forces.

• If non-conservative forces do no work and there are no external forces, the mechanical energy of a particle stays
constant. This is a statement of the conservation of mechanical energy and there is no change in the total mechanical
energy.

• For one-dimensional particle motion, in which the mechanical energy is constant and the potential energy is known,
the particle’s position, as a function of time, can be found by evaluating an integral that is derived from the
conservation of mechanical energy.

8.4 Potential Energy Diagrams and Stability

• Interpreting a one-dimensional potential energy diagram allows you to obtain qualitative, and some quantitative,
information about the motion of a particle.

• At a turning point, the potential energy equals the mechanical energy and the kinetic energy is zero, indicating that
the direction of the velocity reverses there.

• The negative of the slope of the potential energy curve, for a particle, equals the one-dimensional component of the
conservative force on the particle. At an equilibrium point, the slope is zero and is a stable (unstable) equilibrium
for a potential energy minimum (maximum).

8.5 Sources of Energy

• Energy can be transferred from one system to another and transformed or converted from one type into another.
Some of the basic types of energy are kinetic, potential, thermal, and electromagnetic.

• Renewable energy sources are those that are replenished by ongoing natural processes, over human time scales.
Examples are wind, water, geothermal, and solar power.

• Non-renewable energy sources are those that are depleted by consumption, over human time scales. Examples are
fossil fuel and nuclear power.

CONCEPTUAL QUESTIONS

8.1 Potential Energy of a System

1. The kinetic energy of a system must always be positive
or zero. Explain whether this is true for the potential energy
of a system.

2. The force exerted by a diving board is conservative,
provided the internal friction is negligible. Assuming

friction is negligible, describe changes in the potential
energy of a diving board as a swimmer drives from it,
starting just before the swimmer steps on the board until
just after his feet leave it.

3. Describe the gravitational potential energy transfers and
transformations for a javelin, starting from the point at
which an athlete picks up the javelin and ending when the
javelin is stuck into the ground after being thrown.
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4. A couple of soccer balls of equal mass are kicked off the
ground at the same speed but at different angles. Soccer ball
A is kicked off at an angle slightly above the horizontal,
whereas ball B is kicked slightly below the vertical. How
do each of the following compare for ball A and ball B? (a)
The initial kinetic energy and (b) the change in gravitational
potential energy from the ground to the highest point? If the
energy in part (a) differs from part (b), explain why there is
a difference between the two energies.

5. What is the dominant factor that affects the speed of
an object that started from rest down a frictionless incline
if the only work done on the object is from gravitational
forces?

6. Two people observe a leaf falling from a tree. One
person is standing on a ladder and the other is on the
ground. If each person were to compare the energy of the
leaf observed, would each person find the following to be
the same or different for the leaf, from the point where it
falls off the tree to when it hits the ground: (a) the kinetic
energy of the leaf; (b) the change in gravitational potential
energy; (c) the final gravitational potential energy?

8.2 Conservative and Non-Conservative Forces

7. What is the physical meaning of a non-conservative
force?

8. A bottle rocket is shot straight up in the air with a speed
30 m/s . If the air resistance is ignored, the bottle would go

up to a height of approximately 46 m . However, the rocket

goes up to only 35 m before returning to the ground. What

happened? Explain, giving only a qualitative response.

9. An external force acts on a particle during a trip from
one point to another and back to that same point. This
particle is only effected by conservative forces. Does this
particle’s kinetic energy and potential energy change as a
result of this trip?

8.3 Conservation of Energy

10. When a body slides down an inclined plane, does
the work of friction depend on the body’s initial speed?
Answer the same question for a body sliding down a curved
surface.

11. Consider the following scenario. A car for which
friction is not negligible accelerates from rest down a hill,
running out of gasoline after a short distance (see below).
The driver lets the car coast farther down the hill, then up
and over a small crest. He then coasts down that hill into a
gas station, where he brakes to a stop and fills the tank with
gasoline. Identify the forms of energy the car has, and how
they are changed and transferred in this series of events.

12. A dropped ball bounces to one-half its original height.
Discuss the energy transformations that take place.

13. “ E = K + U constant is a special case of the work-

energy theorem.” Discuss this statement.

14. In a common physics demonstration, a bowling ball is
suspended from the ceiling by a rope.

The professor pulls the ball away from its equilibrium
position and holds it adjacent to his nose, as shown below.
He releases the ball so that it swings directly away from
him. Does he get struck by the ball on its return swing?
What is he trying to show in this demonstration?

15. A child jumps up and down on a bed, reaching a
higher height after each bounce. Explain how the child can
increase his maximum gravitational potential energy with
each bounce.

16. Can a non-conservative force increase the mechanical
energy of the system?

17. Neglecting air resistance, how much would I have to
raise the vertical height if I wanted to double the impact
speed of a falling object?

18. A box is dropped onto a spring at its equilibrium
position. The spring compresses with the box attached and
comes to rest. Since the spring is in the vertical position,
does the change in the gravitational potential energy of the
box while the spring is compressing need to be considered
in this problem?

388 Chapter 8 | Potential Energy and Conservation of Energy

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



PROBLEMS

8.1 Potential Energy of a System

19. Using values from Table 8.2, how many DNA
molecules could be broken by the energy carried by a single
electron in the beam of an old-fashioned TV tube? (These
electrons were not dangerous in themselves, but they did
create dangerous X-rays. Later-model tube TVs had
shielding that absorbed X-rays before they escaped and
exposed viewers.)

20. If the energy in fusion bombs were used to supply
the energy needs of the world, how many of the 9-megaton
variety would be needed for a year’s supply of energy
(using data from Table 8.1)?

21. A camera weighing 10 N falls from a small drone
hovering 20 m overhead and enters free fall. What is the

gravitational potential energy change of the camera from
the drone to the ground if you take a reference point of (a)
the ground being zero gravitational potential energy? (b)
The drone being zero gravitational potential energy? What
is the gravitational potential energy of the camera (c) before
it falls from the drone and (d) after the camera lands on the
ground if the reference point of zero gravitational potential
energy is taken to be a second person looking out of a
building 30 m from the ground?

22. Someone drops a 50 − g pebble off of a docked

cruise ship, 70.0 m from the water line. A person on a

dock 3.0 m from the water line holds out a net to catch

the pebble. (a) How much work is done on the pebble
by gravity during the drop? (b) What is the change in
the gravitational potential energy during the drop? If the
gravitational potential energy is zero at the water line, what
is the gravitational potential energy (c) when the pebble
is dropped? (d) When it reaches the net? What if the
gravitational potential energy was 30.0 Joules at water

level? (e) Find the answers to the same questions in (c) and
(d).

23. A cat’s crinkle ball toy of mass 15 g is thrown

straight up with an initial speed of 3 m/s . Assume in this

problem that air drag is negligible. (a) What is the kinetic
energy of the ball as it leaves the hand? (b) How much
work is done by the gravitational force during the ball’s
rise to its peak? (c) What is the change in the gravitational
potential energy of the ball during the rise to its peak? (d) If
the gravitational potential energy is taken to be zero at the
point where it leaves your hand, what is the gravitational
potential energy when it reaches the maximum height? (e)
What if the gravitational potential energy is taken to be zero
at the maximum height the ball reaches, what would the
gravitational potential energy be when it leaves the hand?

(f) What is the maximum height the ball reaches?

8.2 Conservative and Non-Conservative Forces

24. A force F(x) = (3.0/x) N acts on a particle as it

moves along the positive x-axis. (a) How much work does
the force do on the particle as it moves from x = 2.0 m to

x = 5.0 m? (b) Picking a convenient reference point of the

potential energy to be zero at x = ∞, find the potential

energy for this force.

25. A force F(x) = ⎛
⎝−5.0x2 + 7.0x⎞

⎠ N acts on a particle.

(a) How much work does the force do on the particle as
it moves from x = 2.0 m to x = 5.0 m? (b) Picking a

convenient reference point of the potential energy to be
zero at x = ∞, find the potential energy for this force.

26. Find the force corresponding to the potential energy

U(x) = −a/x + b/x2.

27. The potential energy function for either one of the
two atoms in a diatomic molecule is often approximated

by U(x) = −a/x12 − b/x6 where x is the distance between

the atoms. (a) At what distance of seperation does the
potential energy have a local minimum (not at x = ∞)?
(b) What is the force on an atom at this separation? (c) How
does the force vary with the separation distance?

28. A particle of mass 2.0 kg moves under the influence

of the force F(x) = (3/ x) N. If its speed at x = 2.0 m is

v = 6.0 m/s, what is its speed at x = 7.0 m?

29. A particle of mass 2.0 kg moves under the influence

of the force F(x) = ⎛
⎝−5x2 + 7x⎞

⎠ N. If its speed at

x = −4.0 m is v = 20.0 m/s, what is its speed at

x = 4.0 m?

30. A crate on rollers is being pushed without frictional
loss of energy across the floor of a freight car (see the
following figure). The car is moving to the right with a
constant speed v0. If the crate starts at rest relative to

the freight car, then from the work-energy theorem,

Fd = mv2 /2, where d, the distance the crate moves, and

v, the speed of the crate, are both measured relative to the
freight car. (a) To an observer at rest beside the tracks, what
distance d′ is the crate pushed when it moves the distance

d in the car? (b) What are the crate’s initial and final speeds
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v0 ′ and v′ as measured by the observer beside the tracks?

(c) Show that Fd′ = m(v′)2 /2 − m⎛
⎝v′0

⎞
⎠
2 /2 and,

consequently, that work is equal to the change in kinetic
energy in both reference systems.

8.3 Conservation of Energy

31. A boy throws a ball of mass 0.25 kg straight upward

with an initial speed of 20 m/s When the ball returns to the

boy, its speed is 17 m/s How much much work does air

resistance do on the ball during its flight?

32. A mouse of mass 200 g falls 100 m down a vertical
mine shaft and lands at the bottom with a speed of 8.0 m/s.
During its fall, how much work is done on the mouse by air
resistance?

33. Using energy considerations and assuming negligible
air resistance, show that a rock thrown from a bridge 20.0
m above water with an initial speed of 15.0 m/s strikes the
water with a speed of 24.8 m/s independent of the direction
thrown. (Hint: show that Ki + Ui = Kf + Uf)

34. A 1.0-kg ball at the end of a 2.0-m string swings in a
vertical plane. At its lowest point the ball is moving with a
speed of 10 m/s. (a) What is its speed at the top of its path?
(b) What is the tension in the string when the ball is at the
bottom and at the top of its path?

35. Ignoring details associated with friction, extra forces
exerted by arm and leg muscles, and other factors, we
can consider a pole vault as the conversion of an athlete’s
running kinetic energy to gravitational potential energy. If
an athlete is to lift his body 4.8 m during a vault, what speed
must he have when he plants his pole?

36. Tarzan grabs a vine hanging vertically from a tall tree
when he is running at 9.0 m/s. (a) How high can he swing

upward? (b) Does the length of the vine affect this height?

37. Assume that the force of a bow on an arrow behaves
like the spring force. In aiming the arrow, an archer pulls
the bow back 50 cm and holds it in position with a force of
150 N . If the mass of the arrow is 50 g and the “spring” is

massless, what is the speed of the arrow immediately after
it leaves the bow?

38. A 100 − kg man is skiing across level ground at a

speed of 8.0 m/s when he comes to the small slope 1.8

m higher than ground level shown in the following figure.
(a) If the skier coasts up the hill, what is his speed when
he reaches the top plateau? Assume friction between the
snow and skis is negligible. (b) What is his speed when he
reaches the upper level if an 80 − N frictional force acts

on the skis?

39. A sled of mass 70 kg starts from rest and slides down
a 10° incline 80 m long. It then travels for 20 m

horizontally before starting back up an 8° incline. It

travels 80 m along this incline before coming to rest. What
is the net work done on the sled by friction?

40. A girl on a skateboard (total mass of 40 kg) is moving
at a speed of 10 m/s at the bottom of a long ramp. The
ramp is inclined at 20° with respect to the horizontal. If

she travels 14.2 mupward along the ramp before stopping,
what is the net frictional force on her?

41. A baseball of mass 0.25 kg is hit at home plate with
a speed of 40 m/s. When it lands in a seat in the left-field
bleachers a horizontal distance 120 m from home plate,
it is moving at 30 m/s. If the ball lands 20 m above the
spot where it was hit, how much work is done on it by air
resistance?

42. A small block of mass m slides without friction around
the loop-the-loop apparatus shown below. (a) If the block
starts from rest at A, what is its speed at B? (b) What is the
force of the track on the block at B?

43. The massless spring of a spring gun has a force
constant k = 12 N/cm. When the gun is aimed vertically,

a 15-g projectile is shot to a height of 5.0 m above the end
of the expanded spring. (See below.) How much was the
spring compressed initially?
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44. A small ball is tied to a string and set rotating with
negligible friction in a vertical circle. Prove that the tension
in the string at the bottom of the circle exceeds that at
the top of the circle by eight times the weight of the ball.
Assume the ball’s speed is zero as it sails over the top of
the circle and there is no additional energy added to the ball
during rotation.

8.4 Potential Energy Diagrams and Stability

45. A mysterious constant force of 10 N acts horizontally
on everything. The direction of the force is found to be
always pointed toward a wall in a big hall. Find the
potential energy of a particle due to this force when it is at
a distance x from the wall, assuming the potential energy at
the wall to be zero.

46. A single force F(x) = −4.0x (in newtons) acts on a

1.0-kg body. When x = 3.5 m, the speed of the body is 4.0

m/s. What is its speed at x = 2.0 m?

47. A particle of mass 4.0 kg is constrained to move

along the x-axis under a single force F(x) = −cx3, where

c = 8.0 N/m3. The particle’s speed at A, where

xA = 1.0 m, is 6.0 m/s. What is its speed at B, where

xB = −2.0 m?

48. The force on a particle of mass 2.0 kg varies with

position according to F(x) = −3.0x2 (x in meters, F(x)

in newtons). The particle’s velocity at x = 2.0 m is 5.0

m/s. Calculate the mechanical energy of the particle using
(a) the origin as the reference point and (b) x = 4.0 m
as the reference point. (c) Find the particle’s velocity at
x = 1.0 m. Do this part of the problem for each reference

point.

49. A 4.0-kg particle moving along the x-axis is acted
upon by the force whose functional form appears below.

The velocity of the particle at x = 0 is v = 6.0 m/s. Find

the particle’s speed at
x = (a)2.0 m, (b)4.0 m, (c)10.0 m, (d) Does the particle

turn around at some point and head back toward the origin?
(e) Repeat part (d) if v = 2.0 m/s at x = 0.

50. A particle of mass 0.50 kg moves along the x-axis
with a potential energy whose dependence on x is shown
below. (a) What is the force on the particle at
x = 2.0, 5.0, 8.0, and 12 m? (b) If the total mechanical

energy E of the particle is −6.0 J, what are the minimum
and maximum positions of the particle? (c) What are these
positions if E = 2.0 J? (d) If E = 16 J , what are the

speeds of the particle at the positions listed in part (a)?

51. (a) Sketch a graph of the potential energy function

U(x) = kx2 /2 + Ae−αx2
, where k, A, and α are

constants. (b) What is the force corresponding to this
potential energy? (c) Suppose a particle of mass m moving
with this potential energy has a velocity va when its

position is x = a . Show that the particle does not pass

through the origin unless A ≤ mva 2 + ka2

2⎛
⎝1 − e−αa2⎞

⎠
.
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8.5 Sources of Energy

52. In the cartoon movie Pocahontas
(https://openstaxcollege.org/l/21pocahontclip) ,
Pocahontas runs to the edge of a cliff and jumps off,
showcasing the fun side of her personality. (a) If she is
running at 3.0 m/s before jumping off the cliff and she hits
the water at the bottom of the cliff at 20.0 m/s, how high
is the cliff? Assume negligible air drag in this cartoon. (b)
If she jumped off the same cliff from a standstill, how fast
would she be falling right before she hit the water?

53. In the reality television show “Amazing Race”
(https://openstaxcollege.org/l/21amazraceclip) , a
contestant is firing 12-kg watermelons from a slingshot to
hit targets down the field. The slingshot is pulled back 1.5
m and the watermelon is considered to be at ground level.
The launch point is 0.3 m from the ground and the targets
are 10 m horizontally away. Calculate the spring constant
of the slingshot.

54. In the Back to the Future movies
(https://openstaxcollege.org/l/21bactofutclip) , a
DeLorean car of mass 1230 kg travels at 88 miles per hour
to venture back to the future. (a) What is the kinetic energy
of the DeLorian? (b) What spring constant would be needed
to stop this DeLorean in a distance of 0.1m?

55. In the Hunger Games movie
(https://openstaxcollege.org/l/21HungGamesclip)
, Katniss Everdeen fires a 0.0200-kg arrow from ground
level to pierce an apple up on a stage. The spring constant
of the bow is 330 N/m and she pulls the arrow back a
distance of 0.55 m. The apple on the stage is 5.00 m higher
than the launching point of the arrow. At what speed does
the arrow (a) leave the bow? (b) strike the apple?

56. In a “Top Fail” video
(https://openstaxcollege.org/l/21topfailvideo) , two
women run at each other and collide by hitting exercise
balls together. If each woman has a mass of 50 kg, which
includes the exercise ball, and one woman runs to the right
at 2.0 m/s and the other is running toward her at 1.0 m/s, (a)
how much total kinetic energy is there in the system? (b)

If energy is conserved after the collision and each exercise
ball has a mass of 2.0 kg, how fast would the balls fly off
toward the camera?

57. In a Coyote/Road Runner cartoon clip
(https://openstaxcollege.org/l/21coyroadcarcl) , a
spring expands quickly and sends the coyote into a rock.
If the spring extended 5 m and sent the coyote of mass 20
kg to a speed of 15 m/s, (a) what is the spring constant of
this spring? (b) If the coyote were sent vertically into the air
with the energy given to him by the spring, how high could
he go if there were no non-conservative forces?

58. In an iconic movie scene, Forrest Gump
(https://openstaxcollege.org/l/21ForrGumpvid)
runs around the country. If he is running at a constant speed
of 3 m/s, would it take him more or less energy to run uphill
or downhill and why?

59. In the movie Monty Python and the Holy Grail
(https://openstaxcollege.org/l/21monpytmovcl) a
cow is catapulted from the top of a castle wall over to the
people down below. The gravitational potential energy is
set to zero at ground level. The cow is launched from a

spring of spring constant 1.1 × 104 N/m that is expanded

0.5 m from equilibrium. If the castle is 9.1 m tall and the
mass of the cow is 110 kg, (a) what is the gravitational
potential energy of the cow at the top of the castle? (b)
What is the elastic spring energy of the cow before the
catapult is released? (c) What is the speed of the cow right
before it lands on the ground?

60. A 60.0-kg skier with an initial speed of 12.0 m/s coasts
up a 2.50-m high rise as shown. Find her final speed at the
top, given that the coefficient of friction between her skis
and the snow is 0.80.

61. (a) How high a hill can a car coast up (engines
disengaged) if work done by friction is negligible and its
initial speed is 110 km/h? (b) If, in actuality, a 750-kg car
with an initial speed of 110 km/h is observed to coast up a
hill to a height 22.0 m above its starting point, how much
thermal energy was generated by friction? (c) What is the
average force of friction if the hill has a slope of 2.5°
above the horizontal?

62. A 5.00 × 105 -kg subway train is brought to a stop

from a speed of 0.500 m/s in 0.400 m by a large spring
bumper at the end of its track. What is the spring constant k
of the spring?
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63. A pogo stick has a spring with a spring constant of

2.5 × 104 N/m, which can be compressed 12.0 cm. To

what maximum height from the uncompressed spring can a
child jump on the stick using only the energy in the spring,
if the child and stick have a total mass of 40 kg?

64. A block of mass 500 g is attached to a spring of spring
constant 80 N/m (see the following figure). The other end
of the spring is attached to a support while the mass rests
on a rough surface with a coefficient of friction of 0.20
that is inclined at angle of 30°. The block is pushed along

the surface till the spring compresses by 10 cm and is
then released from rest. (a) How much potential energy
was stored in the block-spring-support system when the
block was just released? (b) Determine the speed of the
block when it crosses the point when the spring is neither
compressed nor stretched. (c) Determine the position of the
block where it just comes to rest on its way up the incline.

65. A block of mass 200 g is attached at the end of a
massless spring of spring constant 100 N/cm. The other
end of the spring is attached to the ceiling and the mass is
brought to rest. Let us mark this point as O. Suppose, this
point is taken to be the zero of the potential energy of the
block, both from the weight and the spring force. The mass
hangs freely and the spring is in a stretched state. The block
is then pulled downward by another 5.00 cm and released
from rest. (a) What is the net potential energy of the block
at the instant the block is at the lowest point? (b) What is
the net potential energy of the block at the instant the block

returns to the point marked O? (c) What is the speed of the
block as it crosses the point marked O? (d) How high above
the point marked O does the block rise before coming to
rest again?

66. A T-shirt cannon launches a shirt at 5.00 m/s from
a platform height of 3.00 m from ground level. How fast
will the shirt be traveling if it is caught by someone whose
hands are (a) 1.00 m from ground level? (b) 4.00 m from
ground level? Neglect air drag.

67. A child (32 kg) jumps up and down on a trampoline.
The trampoline exerts a spring restoring force on the child
with a constant of 5000 N/m. At the highest point of the
bounce, the child is 1.0 m above the level surface of the
trampoline. What is the compression distance of the
trampoline? Neglect the bending of the legs or any transfer
of energy of the child into the trampoline while jumping.

68. Shown below is a box of mass m1 that sits on a

frictionless incline at an angle above the horizontal θ . This

box is connected by a relatively massless string, over a
frictionless pulley, and finally connected to a box at rest
over the ledge, labeled m2 . If m1 and m2 are a height

h above the ground and m2 >>m1 : (a) What is the initial

gravitational potential energy of the system? (b) What is the
final kinetic energy of the system?

ADDITIONAL PROBLEMS

69. A massless spring with force constant k = 200 N/m
hangs from the ceiling. A 2.0-kg block is attached to the
free end of the spring and released. If the block falls 17 cm
before starting back upwards, how much work is done by
friction during its descent?

70. A particle of mass 2.0 kg moves under the influence

of the force F(x) = ⎛
⎝−5x2 + 7x⎞

⎠ N. Suppose a frictional

force also acts on the particle. If the particle’s speed when
it starts at x = −4.0 m is 0.0 m/s and when it arrives at

x = 4.0 m is 9.0 m/s, how much work is done on it by the

frictional force between x = −4.0 m and x = 4.0 m?

71. Block 2 shown below slides along a frictionless table
as block 1 falls. Both blocks are attached by a frictionless
pulley. Find the speed of the blocks after they have each
moved 2.0 m. Assume that they start at rest and that the
pulley has negligible mass. Use m1 = 2.0 kg and

m2 = 4.0 kg.

Chapter 8 | Potential Energy and Conservation of Energy 393



72. A body of mass m and negligible size starts from rest
and slides down the surface of a frictionless solid sphere of
radius R. (See below.) Prove that the body leaves the sphere

when θ = cos−1 (2/3).

73. A mysterious force acts on all particles along a
particular line and always points towards a particular point
P on the line. The magnitude of the force on a particle
increases as the cube of the distance from that point; that

is F∞r3 , if the distance from P to the position of the

particle is r. Let b be the proportionality constant, and write

the magnitude of the force as F = br3 . Find the potential

energy of a particle subjected to this force when the particle
is at a distance D from P, assuming the potential energy to
be zero when the particle is at P.

74. An object of mass 10 kg is released at point A, slides
to the bottom of the 30° incline, then collides with a

horizontal massless spring, compressing it a maximum
distance of 0.75 m. (See below.) The spring constant is 500
M/m, the height of the incline is 2.0 m, and the horizontal
surface is frictionless. (a) What is the speed of the object at
the bottom of the incline? (b) What is the work of friction
on the object while it is on the incline? (c) The spring
recoils and sends the object back toward the incline. What
is the speed of the object when it reaches the base of the
incline? (d) What vertical distance does it move back up the
incline?

75. Shown below is a small ball of mass m attached to
a string of length a. A small peg is located a distance h
below the point where the string is supported. If the ball is
released when the string is horizontal, show that h must be
greater than 3a/5 if the ball is to swing completely around
the peg.

76. A block leaves a frictionless inclined surfarce
horizontally after dropping off by a height h. Find the
horizontal distance D where it will land on the floor, in
terms of h, H, and g.

77. A block of mass m, after sliding down a frictionless
incline, strikes another block of mass M that is attached
to a spring of spring constant k (see below). The blocks
stick together upon impact and travel together. (a) Find the
compression of the spring in terms of m, M, h, g, and k
when the combination comes to rest. (b) The loss of kinetic
energy as a result of the bonding of the two masses upon
impact is stored in the so-called binding energy of the two
masses. Calculate the binding energy.
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78. A block of mass 300 g is attached to a spring of spring
constant 100 N/m. The other end of the spring is attached
to a support while the block rests on a smooth horizontal
table and can slide freely without any friction. The block
is pushed horizontally till the spring compresses by 12 cm,
and then the block is released from rest. (a) How much
potential energy was stored in the block-spring support
system when the block was just released? (b) Determine
the speed of the block when it crosses the point when the
spring is neither compressed nor stretched. (c) Determine
the speed of the block when it has traveled a distance of 20
cm from where it was released.

79. Consider a block of mass 0.200 kg attached to a spring
of spring constant 100 N/m. The block is placed on a
frictionless table, and the other end of the spring is attached
to the wall so that the spring is level with the table. The
block is then pushed in so that the spring is compressed by
10.0 cm. Find the speed of the block as it crosses (a) the
point when the spring is not stretched, (b) 5.00 cm to the
left of point in (a), and (c) 5.00 cm to the right of point in
(a).

80. A skier starts from rest and slides downhill. What will
be the speed of the skier if he drops by 20 meters in vertical
height? Ignore any air resistance (which will, in reality, be
quite a lot), and any friction between the skis and the snow.

81. Repeat the preceding problem, but this time, suppose
that the work done by air resistance cannot be ignored.
Let the work done by the air resistance when the skier
goes from A to B along the given hilly path be −2000 J.
The work done by air resistance is negative since the air
resistance acts in the opposite direction to the displacement.
Supposing the mass of the skier is 50 kg, what is the speed
of the skier at point B?

82. Two bodies are interacting by a conservative force.
Show that the mechanical energy of an isolated system
consisting of two bodies interacting with a conservative
force is conserved. (Hint: Start by using Newton’s third law
and the definition of work to find the work done on each
body by the conservative force.)

83. In an amusement park, a car rolls in a track as shown
below. Find the speed of the car at A, B, and C. Note
that the work done by the rolling friction is zero since the
displacement of the point at which the rolling friction acts
on the tires is momentarily at rest and therefore has a zero
displacement.

84. A 200-g steel ball is tied to a 2.00-m “massless” string
and hung from the ceiling to make a pendulum, and then,
the ball is brought to a position making a 30° angle with

the vertical direction and released from rest. Ignoring the
effects of the air resistance, find the speed of the ball when
the string (a) is vertically down, (b) makes an angle of 20°
with the vertical and (c) makes an angle of 10° with the

vertical.

85. A hockey puck is shot across an ice-covered pond.
Before the hockey puck was hit, the puck was at rest.
After the hit, the puck has a speed of 40 m/s. The puck
comes to rest after going a distance of 30 m. (a) Describe
how the energy of the puck changes over time, giving the
numerical values of any work or energy involved. (b) Find
the magnitude of the net friction force.

86. A projectile of mass 2 kg is fired with a speed of 20
m/s at an angle of 30° with respect to the horizontal. (a)

Calculate the initial total energy of the projectile given that
the reference point of zero gravitational potential energy
at the launch position. (b) Calculate the kinetic energy at
the highest vertical position of the projectile. (c) Calculate
the gravitational potential energy at the highest vertical
position. (d) Calculate the maximum height that the
projectile reaches. Compare this result by solving the same
problem using your knowledge of projectile motion.

87. An artillery shell is fired at a target 200 m above the
ground. When the shell is 100 m in the air, it has a speed of
100 m/s. What is its speed when it hits its target? Neglect
air friction.

88. How much energy is lost to a dissipative drag force if
a 60-kg person falls at a constant speed for 15 meters?

89. A box slides on a frictionless surface with a total
energy of 50 J. It hits a spring and compresses the spring
a distance of 25 cm from equilibrium. If the same box
with the same initial energy slides on a rough surface,
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it only compresses the spring a distance of 15 cm, how
much energy must have been lost by sliding on the rough

surface?
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9 | LINEAR MOMENTUM
AND COLLISIONS

Figure 9.1 The concepts of impulse, momentum, and center of mass are crucial for a major-league baseball player to
successfully get a hit. If he misjudges these quantities, he might break his bat instead. (credit: modification of work by “Cathy
T”/Flickr)

Chapter Outline

9.1 Linear Momentum

9.2 Impulse and Collisions

9.3 Conservation of Linear Momentum

9.4 Types of Collisions

9.5 Collisions in Multiple Dimensions

9.6 Center of Mass

9.7 Rocket Propulsion

Introduction
The concepts of work, energy, and the work-energy theorem are valuable for two primary reasons: First, they are powerful
computational tools, making it much easier to analyze complex physical systems than is possible using Newton’s laws
directly (for example, systems with nonconstant forces); and second, the observation that the total energy of a closed system
is conserved means that the system can only evolve in ways that are consistent with energy conservation. In other words, a
system cannot evolve randomly; it can only change in ways that conserve energy.

In this chapter, we develop and define another conserved quantity, called linear momentum, and another relationship (the
impulse-momentum theorem), which will put an additional constraint on how a system evolves in time. Conservation of
momentum is useful for understanding collisions, such as that shown in the above image. It is just as powerful, just as
important, and just as useful as conservation of energy and the work-energy theorem.
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9.1 | Linear Momentum

Learning Objectives

By the end of this section, you will be able to:

• Explain what momentum is, physically

• Calculate the momentum of a moving object

Our study of kinetic energy showed that a complete understanding of an object’s motion must include both its mass and its

velocity ( K = (1/2)mv2 ). However, as powerful as this concept is, it does not include any information about the direction

of the moving object’s velocity vector. We’ll now define a physical quantity that includes direction.

Like kinetic energy, this quantity includes both mass and velocity; like kinetic energy, it is a way of characterizing
the “quantity of motion” of an object. It is given the name momentum (from the Latin word movimentum, meaning
“movement”), and it is represented by the symbol p.

Momentum

The momentum p of an object is the product of its mass and its velocity:

(9.1)p→ = m v→ .

Figure 9.2 The velocity and momentum vectors for the ball
are in the same direction. The mass of the ball is about 0.5 kg, so
the momentum vector is about half the length of the velocity
vector because momentum is velocity time mass. (credit:
modification of work by Ben Sutherland)

As shown in Figure 9.2, momentum is a vector quantity (since velocity is). This is one of the things that makes momentum
useful and not a duplication of kinetic energy. It is perhaps most useful when determining whether an object’s motion is
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difficult to change (Figure 9.3) or easy to change (Figure 9.4).

Figure 9.3 This supertanker transports a huge mass of oil; as a consequence, it takes a long
time for a force to change its (comparatively small) velocity. (credit: modification of work by
“the_tahoe_guy”/Flickr)

Figure 9.4 Gas molecules can have very large velocities, but
these velocities change nearly instantaneously when they collide
with the container walls or with each other. This is primarily
because their masses are so tiny.

Unlike kinetic energy, momentum depends equally on an object’s mass and velocity. For example, as you will learn when
you study thermodynamics, the average speed of an air molecule at room temperature is approximately 500 m/s, with an

average molecular mass of 6 × 10−25 kg ; its momentum is thus

pmolecule = ⎛
⎝6 × 10−25 kg⎞

⎠
⎛
⎝500 m

s
⎞
⎠ = 3 × 10−22 kg · m

s .

For comparison, a typical automobile might have a speed of only 15 m/s, but a mass of 1400 kg, giving it a momentum of

pcar = ⎛
⎝1400 kg⎞

⎠
⎛
⎝15 m

s
⎞
⎠ = 21,000 kg · m

s .

These momenta are different by 27 orders of magnitude, or a factor of a billion billion billion!
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9.2 | Impulse and Collisions

Learning Objectives

By the end of this section, you will be able to:

• Explain what an impulse is, physically

• Describe what an impulse does

• Relate impulses to collisions

• Apply the impulse-momentum theorem to solve problems

We have defined momentum to be the product of mass and velocity. Therefore, if an object’s velocity should change (due
to the application of a force on the object), then necessarily, its momentum changes as well. This indicates a connection
between momentum and force. The purpose of this section is to explore and describe that connection.

Suppose you apply a force on a free object for some amount of time. Clearly, the larger the force, the larger the object’s
change of momentum will be. Alternatively, the more time you spend applying this force, again the larger the change of
momentum will be, as depicted in Figure 9.5. The amount by which the object’s motion changes is therefore proportional
to the magnitude of the force, and also to the time interval over which the force is applied.

Figure 9.5 The change in momentum of an object is
proportional to the length of time during which the force is
applied. If a force is exerted on the lower ball for twice as long
as on the upper ball, then the change in the momentum of the
lower ball is twice that of the upper ball.

Mathematically, if a quantity is proportional to two (or more) things, then it is proportional to the product of those things.

The product of a force and a time interval (over which that force acts) is called impulse, and is given the symbol J→ .

Impulse

Let F→ (t) be the force applied to an object over some differential time interval dt (Figure 9.6). The resulting impulse

on the object is defined as

(9.2)d J→ ≡ F→ (t)dt.
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Figure 9.6 A force applied by a tennis racquet to a tennis ball
over a time interval generates an impulse acting on the ball.

The total impulse over the interval tf − ti is

(9.3)
J→ = ∫

ti

tf
d J→ or J→ ≡ ∫

ti

tf
F→ (t)dt.

Equation 9.2 and Equation 9.3 together say that when a force is applied for an infinitesimal time interval dt, it causes

an infinitesimal impulse d J→ , and the total impulse given to the object is defined to be the sum (integral) of all these

infinitesimal impulses.

To calculate the impulse using Equation 9.3, we need to know the force function F(t), which we often don’t. However, a
result from calculus is useful here: Recall that the average value of a function over some interval is calculated by

f (x)ave = 1
Δx∫xi

xf
f (x)dx

where Δx = xf − xi . Applying this to the time-dependent force function, we obtain

(9.4)
F→ ave = 1

Δt∫ti

tf
F→ (t)dt.

Therefore, from Equation 9.3,

(9.5)J→ = F→ ave Δt.

The idea here is that you can calculate the impulse on the object even if you don’t know the details of the force as a function
of time; you only need the average force. In fact, though, the process is usually reversed: You determine the impulse (by
measurement or calculation) and then calculate the average force that caused that impulse.
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To calculate the impulse, a useful result follows from writing the force in Equation 9.3 as F→ (t) = m a→ (t) :

J→ = ∫
ti

tf
F→ (t)dt = m∫

ti

tf
a→ (t)dt = m⎡

⎣ v→ (tf) − v→ i
⎤
⎦.

For a constant force F→ ave = F→ = m a→ , this simplifies to

J→ = m a→ Δt = m v→ f − m v→ i = m( v→ f − v→ i).

That is,

(9.6)J→ = mΔ v→ .

Note that the integral form, Equation 9.3, applies to constant forces as well; in that case, since the force is independent of
time, it comes out of the integral, which can then be trivially evaluated.

Example 9.1

The Arizona Meteor Crater

Approximately 50,000 years ago, a large (radius of 25 m) iron-nickel meteorite collided with Earth at an estimated

speed of 1.28 × 104 m/s in what is now the northern Arizona desert, in the United States. The impact produced

a crater that is still visible today (Figure 9.7); it is approximately 1200 m (three-quarters of a mile) in diameter,
170 m deep, and has a rim that rises 45 m above the surrounding desert plain. Iron-nickel meteorites typically

have a density of ρ = 7970 kg/m3 . Use impulse considerations to estimate the average force and the maximum

force that the meteor applied to Earth during the impact.

Figure 9.7 The Arizona Meteor Crater in Flagstaff, Arizona (often referred to as the Barringer Crater after the person
who first suggested its origin and whose family owns the land). (credit: “Shane.torgerson”/Wikimedia Commons)

Strategy

It is conceptually easier to reverse the question and calculate the force that Earth applied on the meteor in order to
stop it. Therefore, we’ll calculate the force on the meteor and then use Newton’s third law to argue that the force
from the meteor on Earth was equal in magnitude and opposite in direction.
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Using the given data about the meteor, and making reasonable guesses about the shape of the meteor and impact
time, we first calculate the impulse using Equation 9.6. We then use the relationship between force and impulse
Equation 9.5 to estimate the average force during impact. Next, we choose a reasonable force function for the
impact event, calculate the average value of that function Equation 9.4, and set the resulting expression equal
to the calculated average force. This enables us to solve for the maximum force.

Solution

Define upward to be the +y-direction. For simplicity, assume the meteor is traveling vertically downward prior to

impact. In that case, its initial velocity is v→ i = −vi j
^

, and the force Earth exerts on the meteor points upward,

F→ (t) = + F(t) j
^

. The situation at t = 0 is depicted below.

The average force during the impact is related to the impulse by

F→ ave = J→

Δt .

From Equation 9.6, J→ = mΔ v→ , so we have

F→ ave = mΔ v→
Δt .

The mass is equal to the product of the meteor’s density and its volume:

m = ρV .

If we assume (guess) that the meteor was roughly spherical, we have

V = 4
3πR

3.

Thus we obtain

F→ ave = ρVΔ v→
Δt =

ρ⎛
⎝
4
3πR

3⎞
⎠
⎛
⎝ v→ f − v→ i

⎞
⎠

Δt .

The problem says the velocity at impact was −1.28 × 104 m/s j
^

(the final velocity is zero); also, we guess that

the primary impact lasted about tmax = 2 s . Substituting these values gives
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F→ ave =

⎛
⎝7970 kg

m3
⎞
⎠

⎡
⎣
4
3 π (25 m)3⎤

⎦
⎡
⎣0 m

s − ⎛
⎝−1.28 × 104 m

s j
^⎞

⎠
⎤
⎦

2 s

= + ⎛
⎝3.33 × 1012 N⎞

⎠ j
^

.

This is the average force applied during the collision. Notice that this force vector points in the same direction as

the change of velocity vector Δ v→ .

Next, we calculate the maximum force. The impulse is related to the force function by

J→ = ∫
ti

tmax
F→ (t)dt.

We need to make a reasonable choice for the force as a function of time. We define t = 0 to be the moment the

meteor first touches the ground. Then we assume the force is a maximum at impact, and rapidly drops to zero. A
function that does this is

F(t) = Fmax e
−t2/⎛⎝2τ

2⎞
⎠.

(The parameter τ represents how rapidly the force decreases to zero.) The average force is

Fave = 1
Δt∫0

tmax
Fmaxe

−t2/⎛⎝2τ
2⎞

⎠dt

where Δt = tmax − 0 s . Since we already have a numeric value for Fave , we can use the result of the integral to

obtain Fmax .

Choosing τ = 1
etmax (this is a common choice, as you will see in later chapters), and guessing that tmax = 2 s ,

this integral evaluates to

Favg = 0.458 Fmax.

Thus, the maximum force has a magnitude of

0.458Fmax = 3.33 × 1012 N
Fmax = 7.27 × 1012 N

.

The complete force function, including the direction, is

F→ (t) = ⎛
⎝7.27 × 1012 N⎞

⎠e
−t2/⎛⎝8s2⎞

⎠ ŷ .

This is the force Earth applied to the meteor; by Newton’s third law, the force the meteor applied to Earth is

F→ (t) = −⎛
⎝7.27 × 1012 N⎞

⎠e
−t2/⎛⎝8s2⎞

⎠ ŷ

which is the answer to the original question.

Significance

The graph of this function contains important information. Let’s graph (the magnitude of) both this function and
the average force together (Figure 9.8).
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Figure 9.8 A graph of the average force (in red) and the force as a function of time (blue) of the
meteor impact. The areas under the curves are equal to each other, and are numerically equal to the
applied impulse.

Notice that the area under each plot has been filled in. For the plot of the (constant) force Fave , the area is a

rectangle, corresponding to Fave Δt = J . As for the plot of F(t), recall from calculus that the area under the

plot of a function is numerically equal to the integral of that function, over the specified interval; so here, that

is ∫
0

tmax
F(t)dt = J . Thus, the areas are equal, and both represent the impulse that the meteor applied to Earth

during the two-second impact. The average force on Earth sounds like a huge force, and it is. Nevertheless, Earth
barely noticed it. The acceleration Earth obtained was just

a→ = − F→ ave
MEarth

=
−⎛

⎝3.33 × 1012 N⎞
⎠ j
^

5.97 × 1024 kg
= −⎛

⎝5.6 × 10−13 m
s2

⎞
⎠ j

^

which is completely immeasurable. That said, the impact created seismic waves that nowadays could be detected
by modern monitoring equipment.

Example 9.2

The Benefits of Impulse

A car traveling at 27 m/s collides with a building. The collision with the building causes the car to come to a stop
in approximately 1 second. The driver, who weighs 860 N, is protected by a combination of a variable-tension
seatbelt and an airbag (Figure 9.9). (In effect, the driver collides with the seatbelt and airbag and not with the
building.) The airbag and seatbelt slow his velocity, such that he comes to a stop in approximately 2.5 s.

a. What average force does the driver experience during the collision?

b. Without the seatbelt and airbag, his collision time (with the steering wheel) would have been
approximately 0.20 s. What force would he experience in this case?
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Figure 9.9 The motion of a car and its driver at the instant before and the instant after colliding with
the wall. The restrained driver experiences a large backward force from the seatbelt and airbag, which
causes his velocity to decrease to zero. (The forward force from the seatback is much smaller than the
backward force, so we neglect it in the solution.)

Strategy

We are given the driver’s weight, his initial and final velocities, and the time of collision; we are asked to calculate
a force. Impulse seems the right way to tackle this; we can combine Equation 9.5 and Equation 9.6.

Solution
a. Define the +x-direction to be the direction the car is initially moving. We know

J→ = F→ Δt

and

J→ = mΔ v→ .

Since J is equal to both those things, they must be equal to each other:

F→ Δt = mΔ v→ .

We need to convert this weight to the equivalent mass, expressed in SI units:

860 N
9.8 m/s2 = 87.8 kg.

Remembering that Δ v→ = v→ f − v→ i , and noting that the final velocity is zero, we solve for the

force:

F→ = m0 − vi i
^

Δt = ⎛
⎝87.8 kg⎞

⎠

⎛

⎝
⎜−(27 m/s) i

^

2.5 s

⎞

⎠
⎟ = −(948 N) i

^
.

The negative sign implies that the force slows him down. For perspective, this is about 1.1 times his own
weight.

b. Same calculation, just the different time interval:

F→ = ⎛
⎝87.8 kg⎞

⎠

⎛

⎝
⎜−(27 m/s) i

^

0.20 s

⎞

⎠
⎟ = −(11,853 N) i

^
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which is about 14 times his own weight. Big difference!

Significance

You see that the value of an airbag is how greatly it reduces the force on the vehicle occupants. For this reason,
they have been required on all passenger vehicles in the United States since 1991, and have been commonplace
throughout Europe and Asia since the mid-1990s. The change of momentum in a crash is the same, with or
without an airbag; the force, however, is vastly different.

Effect of Impulse
Since an impulse is a force acting for some amount of time, it causes an object’s motion to change. Recall Equation 9.6:

J→ = mΔ v→ .

Because m v→ is the momentum of a system, mΔ v→ is the change of momentum Δ p→ . This gives us the following

relation, called the impulse-momentum theorem (or relation).

Impulse-Momentum Theorem

An impulse applied to a system changes the system’s momentum, and that change of momentum is exactly equal to
the impulse that was applied:

(9.7)J→ = Δ p→ .

The impulse-momentum theorem is depicted graphically in Figure 9.10.

Figure 9.10 Illustration of impulse-momentum theorem. (a) A ball with initial velocity

v→ 0 and momentum p→ 0 receives an impulse J→ . (b) This impulse is added

vectorially to the initial momentum. (c) Thus, the impulse equals the change in momentum,

J→ = Δ p→ . (d) After the impulse, the ball moves off with its new momentum p→ f.

There are two crucial concepts in the impulse-momentum theorem:

1. Impulse is a vector quantity; an impulse of, say, −(10 N · s) i
^

is very different from an impulse of +(10 N · s) i
^

;

they cause completely opposite changes of momentum.
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2. An impulse does not cause momentum; rather, it causes a change in the momentum of an object. Thus, you must
subtract the final momentum from the initial momentum, and—since momentum is also a vector quantity—you
must take careful account of the signs of the momentum vectors.

The most common questions asked in relation to impulse are to calculate the applied force, or the change of velocity that
occurs as a result of applying an impulse. The general approach is the same.

Problem-Solving Strategy: Impulse-Momentum Theorem

1. Express the impulse as force times the relevant time interval.

2. Express the impulse as the change of momentum, usually mΔv .

3. Equate these and solve for the desired quantity.

Example 9.3

Moving the Enterprise

Figure 9.11 The fictional starship Enterprise from the Star Trek adventures operated on so-called “impulse engines”
that combined matter with antimatter to produce energy.

“Mister Sulu, take us out; ahead one-quarter impulse.” With this command, Captain Kirk of the starship

Enterprise (Figure 9.11) has his ship start from rest to a final speed of vf = 1/4⎛
⎝3.0 × 108 m/s⎞

⎠ . Assuming this

maneuver is completed in 60 s, what average force did the impulse engines apply to the ship?

Strategy

We are asked for a force; we know the initial and final speeds (and hence the change in speed), and we know
the time interval over which this all happened. In particular, we know the amount of time that the force acted.
This suggests using the impulse-momentum relation. To use that, though, we need the mass of the Enterprise. An

internet search gives a best estimate of the mass of the Enterprise (in the 2009 movie) as 2 × 109 kg .

Solution

Because this problem involves only one direction (i.e., the direction of the force applied by the engines), we only
need the scalar form of the impulse-momentum theorem Equation 9.7, which is
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9.1

Δp = J

with

Δp = mΔv

and

J = FΔt.

Equating these expressions gives

FΔt = mΔv.

Solving for the magnitude of the force and inserting the given values leads to

F = mΔv
Δt =

⎛
⎝2 × 109 kg⎞

⎠
⎛
⎝7.5 × 107 m/s⎞

⎠
60 s = 2.5 × 1015 N.

Significance

This is an unimaginably huge force. It goes almost without saying that such a force would kill everyone on board
instantly, as well as destroying every piece of equipment. Fortunately, the Enterprise has “inertial dampeners.” It
is left as an exercise for the reader’s imagination to determine how these work.

Check Your Understanding The U.S. Air Force uses “10gs” (an acceleration equal to 10 × 9.8 m/s2 )

as the maximum acceleration a human can withstand (but only for several seconds) and survive. How much
time must the Enterprise spend accelerating if the humans on board are to experience an average of at most
10gs of acceleration? (Assume the inertial dampeners are offline.)

Example 9.4

The iPhone Drop

Apple released its iPhone 6 Plus in November 2014. According to many reports, it was originally supposed to
have a screen made from sapphire, but that was changed at the last minute for a hardened glass screen. Reportedly,
this was because the sapphire screen cracked when the phone was dropped. What force did the iPhone 6 Plus
experience as a result of being dropped?

Strategy

The force the phone experiences is due to the impulse applied to it by the floor when the phone collides with
the floor. Our strategy then is to use the impulse-momentum relationship. We calculate the impulse, estimate the
impact time, and use this to calculate the force.

We need to make a couple of reasonable estimates, as well as find technical data on the phone itself. First, let’s
suppose that the phone is most often dropped from about chest height on an average-height person. Second,
assume that it is dropped from rest, that is, with an initial vertical velocity of zero. Finally, we assume that the
phone bounces very little—the height of its bounce is assumed to be negligible.

Solution

Define upward to be the +y-direction. A typical height is approximately h = 1.5 m and, as stated,

v→ i = (0 m/s) i
^

. The average force on the phone is related to the impulse the floor applies on it during the

collision:

F→ ave = J→

Δt .

The impulse J→ equals the change in momentum,

Chapter 9 | Linear Momentum and Collisions 409



J→ = Δ p→

so

F→ ave = Δ p→
Δt .

Next, the change of momentum is

Δ p→ = mΔ v→ .

We need to be careful with the velocities here; this is the change of velocity due to the collision with the floor.

But the phone also has an initial drop velocity [ v→ i = (0 m/s) j
^

], so we label our velocities. Let:

• v→ i = the initial velocity with which the phone was dropped (zero, in this example)

• v→ 1 = the velocity the phone had the instant just before it hit the floor

• v→ 2 = the final velocity of the phone as a result of hitting the floor

Figure 9.12 shows the velocities at each of these points in the phone’s trajectory.

Figure 9.12 (a) The initial velocity of the phone is zero, just after the
person drops it. (b) Just before the phone hits the floor, its velocity is

v→ 1, which is unknown at the moment, except for its direction, which is

downward (− j
^

). (c) After bouncing off the floor, the phone has a velocity

v→ 2 , which is also unknown, except for its direction, which is upward

( + j
^

).

With these definitions, the change of momentum of the phone during the collision with the floor is

mΔ v→ = m⎛
⎝ v→ 2 − v→ 1

⎞
⎠.
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9.2

Since we assume the phone doesn’t bounce at all when it hits the floor (or at least, the bounce height is negligible),

then v→ 2 is zero, so

mΔ v→ = m⎡
⎣0 − ⎛

⎝−v1 j
^⎞

⎠
⎤
⎦

mΔ v→ = +mv1 j
^

.

We can get the speed of the phone just before it hits the floor using either kinematics or conservation of energy.
We’ll use conservation of energy here; you should re-do this part of the problem using kinematics and prove that
you get the same answer.

First, define the zero of potential energy to be located at the floor. Conservation of energy then gives us:

Ei = E1
Ki + Ui = K1 + U1

1
2mvi

2 + mghdrop = 1
2mv1

2 + mghfloo .

Defining hfloo = 0 and using v→ i = (0 m/s) j
^

gives

1
2mv1

2 = mghdrop

v1 = ± 2ghdrop.

Because v1 is a vector magnitude, it must be positive. Thus, mΔv = mv1 = m 2ghdrop . Inserting this result

into the expression for force gives

F→ = Δ p→
Δt

= mΔ v→
Δt

= +mv1 j
^

Δt

= m 2gh
Δt j

^
.

Finally, we need to estimate the collision time. One common way to estimate a collision time is to calculate how
long the object would take to travel its own length. The phone is moving at 5.4 m/s just before it hits the floor,
and it is 0.14 m long, giving an estimated collision time of 0.026 s. Inserting the given numbers, we obtain

F→ =
(0.172 kg) 2⎛

⎝9.8 m/s2⎞
⎠(1.5 m)

0.026 s j
^

= (36 N) j
^

.

Significance

The iPhone itself weighs just (0.172 kg)(9.81 m/s2) = 1.68 N ; the force the floor applies to it is therefore over

20 times its weight.

Check Your Understanding What if we had assumed the phone did bounce on impact? Would this have
increased the force on the iPhone, decreased it, or made no difference?

Momentum and Force
In Example 9.3, we obtained an important relationship:
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(9.8)
F→ ave = Δ p→

Δt .

In words, the average force applied to an object is equal to the change of the momentum that the force causes, divided by the
time interval over which this change of momentum occurs. This relationship is very useful in situations where the collision
time Δt is small, but measureable; typical values would be 1/10th of a second, or even one thousandth of a second. Car

crashes, punting a football, or collisions of subatomic particles would meet this criterion.

For a continuously changing momentum—due to a continuously changing force—this becomes a powerful conceptual tool.
In the limit Δt → dt , Equation 9.2 becomes

(9.9)
F→ = d p→

dt .

This says that the rate of change of the system’s momentum (implying that momentum is a function of time) is exactly
equal to the net applied force (also, in general, a function of time). This is, in fact, Newton’s second law, written in terms
of momentum rather than acceleration. This is the relationship Newton himself presented in his Principia Mathematica
(although he called it “quantity of motion” rather than “momentum”).

If the mass of the system remains constant, Equation 9.3 reduces to the more familiar form of Newton’s second law. We
can see this by substituting the definition of momentum:

F→ = d(m v→ )
dt = md v→

dt = m a→ .

The assumption of constant mass allowed us to pull m out of the derivative. If the mass is not constant, we cannot use this
form of the second law, but instead must start from Equation 9.3. Thus, one advantage to expressing force in terms of
changing momentum is that it allows for the mass of the system to change, as well as the velocity; this is a concept we’ll
explore when we study the motion of rockets.

Newton’s Second Law of Motion in Terms of Momentum

The net external force on a system is equal to the rate of change of the momentum of that system caused by the force:

F→ = d p→
dt .

Although Equation 9.3 allows for changing mass, as we will see in Rocket Propulsion, the relationship between
momentum and force remains useful when the mass of the system is constant, as in the following example.

Example 9.5

Calculating Force: Venus Williams’ Tennis Serve

During the 2007 French Open, Venus Williams hit the fastest recorded serve in a premier women’s match,
reaching a speed of 58 m/s (209 km/h). What is the average force exerted on the 0.057-kg tennis ball by Venus
Williams’ racquet? Assume that the ball’s speed just after impact is 58 m/s, as shown in Figure 9.13, that the
initial horizontal component of the velocity before impact is negligible, and that the ball remained in contact with
the racquet for 5.0 ms.
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Figure 9.13 The final velocity of the tennis ball is

v→ f = (58 m/s) i
^

.

Strategy

This problem involves only one dimension because the ball starts from having no horizontal velocity component
before impact. Newton’s second law stated in terms of momentum is then written as

F→ = d p→
dt .

As noted above, when mass is constant, the change in momentum is given by

Δp = mΔv = m(vf − vi)

where we have used scalars because this problem involves only one dimension. In this example, the velocity just

after impact and the time interval are given; thus, once Δp is calculated, we can use F = Δp
Δt to find the force.

Solution

To determine the change in momentum, insert the values for the initial and final velocities into the equation above:

Δp = m(vf − vi)
= ⎛

⎝0.057 kg⎞
⎠(58 m/s − 0 m/s)

= 3.3 kg · m
s .

Now the magnitude of the net external force can be determined by using

F = Δp
Δt = 3.3 kg · m

s
5.0 × 10−3 s

= 6.6 × 102 N.

where we have retained only two significant figures in the final step.

Significance

This quantity was the average force exerted by Venus Williams’ racquet on the tennis ball during its brief impact
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(note that the ball also experienced the 0.57-N force of gravity, but that force was not due to the racquet). This
problem could also be solved by first finding the acceleration and then using F = ma , but one additional step

would be required compared with the strategy used in this example.

9.3 | Conservation of Linear Momentum

Learning Objectives

By the end of this section, you will be able to:

• Explain the meaning of “conservation of momentum”

• Correctly identify if a system is, or is not, closed

• Define a system whose momentum is conserved

• Mathematically express conservation of momentum for a given system

• Calculate an unknown quantity using conservation of momentum

Recall Newton’s third law: When two objects of masses m1 and m2 interact (meaning that they apply forces on each

other), the force that object 2 applies to object 1 is equal in magnitude and opposite in direction to the force that object 1
applies on object 2. Let:

• F→ 21 = the force on m1 from m2

• F→ 12 = the force on m2 from m1

Then, in symbols, Newton’s third law says

(9.10)F→ 21 = − F→ 12

m1 a→ 1 = −m2 a→ 2.

(Recall that these two forces do not cancel because they are applied to different objects. F21 causes m1 to accelerate, and

F12 causes m2 to accelerate.)

Although the magnitudes of the forces on the objects are the same, the accelerations are not, simply because the masses (in
general) are different. Therefore, the changes in velocity of each object are different:

d v→ 1
dt ≠ d v→ 2

dt .

However, the products of the mass and the change of velocity are equal (in magnitude):

(9.11)
m1

d v→ 1
dt = −m2

d v→ 2
dt .

It’s a good idea, at this point, to make sure you’re clear on the physical meaning of the derivatives in Equation 9.3.
Because of the interaction, each object ends up getting its velocity changed, by an amount dv. Furthermore, the interaction
occurs over a time interval dt, which means that the change of velocities also occurs over dt. This time interval is the same
for each object.

Let‘s assume, for the moment, that the masses of the objects do not change during the interaction. (We’ll relax this
restriction later.) In that case, we can pull the masses inside the derivatives:

(9.12)d
dt

⎛
⎝m1 v→ 1

⎞
⎠ = − d

dt
⎛
⎝m2 v→ 2

⎞
⎠
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and thus

(9.13)d p→ 1
dt = − d p→ 2

dt .

This says that the rate at which momentum changes is the same for both objects. The masses are different, and the changes

of velocity are different, but the rate of change of the product of m and v→ are the same.

Physically, this means that during the interaction of the two objects ( m1 and m2 ), both objects have their momentum

changed; but those changes are identical in magnitude, though opposite in sign. For example, the momentum of object 1
might increase, which means that the momentum of object 2 decreases by exactly the same amount.

In light of this, let’s re-write Equation 9.12 in a more suggestive form:

(9.14)d p→ 1
dt + d p→ 2

dt = 0.

This says that during the interaction, although object 1’s momentum changes, and object 2’s momentum also changes, these
two changes cancel each other out, so that the total change of momentum of the two objects together is zero.

Since the total combined momentum of the two objects together never changes, then we could write

(9.15)d
dt

⎛
⎝ p→ 1 + p→ 2

⎞
⎠ = 0

from which it follows that

(9.16)p→ 1 + p→ 2 = constant.

As shown in Figure 9.14, the total momentum of the system before and after the collision remains the same.
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Figure 9.14 Before the collision, the two billiard balls travel with

momenta p→ 1 and p→ 3 . The total momentum of the system is the

sum of these, as shown by the red vector labeled p→ total on the left.

After the collision, the two billiard balls travel with different momenta

p→ ′1 and p→ ′3 . The total momentum, however, has not changed, as

shown by the red vector arrow p→ ′total on the right.

Generalizing this result to N objects, we obtain

(9.17)p→ 1 + p→ 2 + p→ 3 + ⋯ + p→ N = constant

∑
j = 1

N
p→ j = constant.

Equation 9.17 is the definition of the total (or net) momentum of a system of N interacting objects, along with the
statement that the total momentum of a system of objects is constant in time—or better, is conserved.

Conservation Laws

If the value of a physical quantity is constant in time, we say that the quantity is conserved.

Requirements for Momentum Conservation
There is a complication, however. A system must meet two requirements for its momentum to be conserved:

1. The mass of the system must remain constant during the interaction.
As the objects interact (apply forces on each other), they may transfer mass from one to another; but any mass one
object gains is balanced by the loss of that mass from another. The total mass of the system of objects, therefore,
remains unchanged as time passes:

⎡
⎣
dm
dt

⎤
⎦system = 0.

2. The net external force on the system must be zero.
As the objects collide, or explode, and move around, they exert forces on each other. However, all of these forces
are internal to the system, and thus each of these internal forces is balanced by another internal force that is equal in
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magnitude and opposite in sign. As a result, the change in momentum caused by each internal force is cancelled by
another momentum change that is equal in magnitude and opposite in direction. Therefore, internal forces cannot
change the total momentum of a system because the changes sum to zero. However, if there is some external force
that acts on all of the objects (gravity, for example, or friction), then this force changes the momentum of the system
as a whole; that is to say, the momentum of the system is changed by the external force. Thus, for the momentum of
the system to be conserved, we must have

F→ ext = 0
→

.

A system of objects that meets these two requirements is said to be a closed system (also called an isolated system). Thus,
the more compact way to express this is shown below.

Law of Conservation of Momentum

The total momentum of a closed system is conserved:

∑
j = 1

N
p→ j = constant.

This statement is called the Law of Conservation of Momentum. Along with the conservation of energy, it is one of the
foundations upon which all of physics stands. All our experimental evidence supports this statement: from the motions of
galactic clusters to the quarks that make up the proton and the neutron, and at every scale in between. In a closed system,
the total momentum never changes.

Note that there absolutely can be external forces acting on the system; but for the system’s momentum to remain constant,
these external forces have to cancel, so that the net external force is zero. Billiard balls on a table all have a weight force
acting on them, but the weights are balanced (canceled) by the normal forces, so there is no net force.

The Meaning of ‘System’
A system (mechanical) is the collection of objects in whose motion (kinematics and dynamics) you are interested. If you are
analyzing the bounce of a ball on the ground, you are probably only interested in the motion of the ball, and not of Earth;
thus, the ball is your system. If you are analyzing a car crash, the two cars together compose your system (Figure 9.15).

Figure 9.15 The two cars together form the system that is to be analyzed. It is important to
remember that the contents (the mass) of the system do not change before, during, or after the
objects in the system interact.
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Problem-Solving Strategy: Conservation of Momentum

Using conservation of momentum requires four basic steps. The first step is crucial:

1. Identify a closed system (total mass is constant, no net external force acts on the system).

2. Write down an expression representing the total momentum of the system before the “event” (explosion or
collision).

3. Write down an expression representing the total momentum of the system after the “event.”

4. Set these two expressions equal to each other, and solve this equation for the desired quantity.

Example 9.6

Colliding Carts

Two carts in a physics lab roll on a level track, with negligible friction. These carts have small magnets at their
ends, so that when they collide, they stick together (Figure 9.16). The first cart has a mass of 675 grams and is
rolling at 0.75 m/s to the right; the second has a mass of 500 grams and is rolling at 1.33 m/s, also to the right.
After the collision, what is the velocity of the two joined carts?

Figure 9.16 Two lab carts collide and stick together after the collision.

Strategy

We have a collision. We’re given masses and initial velocities; we’re asked for the final velocity. This all suggests
using conservation of momentum as a method of solution. However, we can only use it if we have a closed
system. So we need to be sure that the system we choose has no net external force on it, and that its mass is not
changed by the collision.

Defining the system to be the two carts meets the requirements for a closed system: The combined mass of the two
carts certainly doesn’t change, and while the carts definitely exert forces on each other, those forces are internal to
the system, so they do not change the momentum of the system as a whole. In the vertical direction, the weights
of the carts are canceled by the normal forces on the carts from the track.

Solution

Conservation of momentum is

p→ f = p→ i.

Define the direction of their initial velocity vectors to be the +x-direction. The initial momentum is then

p→ i = m1 v1 i
^

+ m2 v2 i
^

.

The final momentum of the now-linked carts is

p→ f = (m1 + m2) v→ f.

Equating:

(m1 + m2) v→ f = m1 v1 i
^

+ m2 v2 i
^

v→ f = ⎛
⎝
m1 v1 + m2 v2

m1 + m2
⎞
⎠ i
^

.
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Substituting the given numbers:

v→ f = ⎡
⎣

⎛
⎝0.675 kg⎞

⎠(0.75 m/s) + ⎛
⎝0.5 kg⎞

⎠(1.33 m/s)
1.175 kg

⎤
⎦ i

^

= (0.997 m/s) i
^

.

Significance

The principles that apply here to two laboratory carts apply identically to all objects of whatever type or size.
Even for photons, the concepts of momentum and conservation of momentum are still crucially important even at
that scale. (Since they are massless, the momentum of a photon is defined very differently from the momentum
of ordinary objects. You will learn about this when you study quantum physics.)

Check Your Understanding Suppose the second, smaller cart had been initially moving to the left. What
would the sign of the final velocity have been in this case?

Example 9.7

A Bouncing Superball

A superball of mass 0.25 kg is dropped from rest from a height of h = 1.50 m above the floor. It bounces with

no loss of energy and returns to its initial height (Figure 9.17).

a. What is the superball’s change of momentum during its bounce on the floor?

b. What was Earth’s change of momentum due to the ball colliding with the floor?

c. What was Earth’s change of velocity as a result of this collision?

(This example shows that you have to be careful about defining your system.)
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Figure 9.17 A superball is dropped to the floor ( t0 ), hits the floor ( t1 ), bounces ( t2 ), and returns to its

initial height ( t3 ).

Strategy

Since we are asked only about the ball’s change of momentum, we define our system to be the ball. But this
is clearly not a closed system; gravity applies a downward force on the ball while it is falling, and the normal
force from the floor applies a force during the bounce. Thus, we cannot use conservation of momentum as a
strategy. Instead, we simply determine the ball’s momentum just before it collides with the floor and just after,
and calculate the difference. We have the ball’s mass, so we need its velocities.

Solution
a. Since this is a one-dimensional problem, we use the scalar form of the equations. Let:

◦ p0 = the magnitude of the ball’s momentum at time t0 , the moment it was released; since it

was dropped from rest, this is zero.

◦ p1 = the magnitude of the ball’s momentum at time t1 , the instant just before it hits the floor.

◦ p2 = the magnitude of the ball’s momentum at time t2 , just after it loses contact with the floor

after the bounce.

The ball’s change of momentum is
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Δ p→ = p→ 2 − p→ 1

= p2 j
^

− ⎛
⎝−p1 j

^⎞
⎠

= (p2 + p1) j
^

.

Its velocity just before it hits the floor can be determined from either conservation of energy or
kinematics. We use kinematics here; you should re-solve it using conservation of energy and confirm you
get the same result.
We want the velocity just before it hits the ground (at time t1 ). We know its initial velocity v0 = 0 (at

time t0 ), the height it falls, and its acceleration; we don’t know the fall time. We could calculate that, but

instead we use

v→ 1 = − j
^

2gy = −5.4 m/s j
^

.
Thus the ball has a momentum of

p→ 1 = −⎛
⎝0.25 kg⎞

⎠
⎛
⎝−5.4 m/s j

^⎞
⎠

= −⎛
⎝1.4 kg · m/s⎞

⎠ j
^

.

We don’t have an easy way to calculate the momentum after the bounce. Instead, we reason from the
symmetry of the situation.
Before the bounce, the ball starts with zero velocity and falls 1.50 m under the influence of gravity,
achieving some amount of momentum just before it hits the ground. On the return trip (after the bounce),
it starts with some amount of momentum, rises the same 1.50 m it fell, and ends with zero velocity. Thus,
the motion after the bounce was the mirror image of the motion before the bounce. From this symmetry,
it must be true that the ball’s momentum after the bounce must be equal and opposite to its momentum
before the bounce. (This is a subtle but crucial argument; make sure you understand it before you go on.)
Therefore,

p→ 2 = − p→ 1 = + ⎛
⎝1.4 kg · m/s⎞

⎠ j
^

.
Thus, the ball’s change of velocity during the bounce is

Δ p→ = p→ 2 − p→ 1

= ⎛
⎝1.4 kg · m/s⎞

⎠ j
^

− ⎛
⎝−1.4 kg · m/s⎞

⎠ j
^

= + ⎛
⎝2.8 kg · m/s⎞

⎠ j
^

.
b. What was Earth’s change of momentum due to the ball colliding with the floor?

Your instinctive response may well have been either “zero; the Earth is just too massive for that tiny ball
to have affected it” or possibly, “more than zero, but utterly negligible.” But no—if we re-define our
system to be the Superball + Earth, then this system is closed (neglecting the gravitational pulls of the
Sun, the Moon, and the other planets in the solar system), and therefore the total change of momentum of
this new system must be zero. Therefore, Earth’s change of momentum is exactly the same magnitude:

Δ p→ Earth = −2.8 kg · m/s j
^

.
c. What was Earth’s change of velocity as a result of this collision?

This is where your instinctive feeling is probably correct:
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Δ v→ Earth = Δ p→ Earth
MEarth

= − 2.8 kg · m/s
5.97 × 1024 kg

j
^

= −⎛
⎝4.7 × 10−25 m/s⎞

⎠ j
^

.

This change of Earth’s velocity is utterly negligible.

Significance

It is important to realize that the answer to part (c) is not a velocity; it is a change of velocity, which is a very
different thing. Nevertheless, to give you a feel for just how small that change of velocity is, suppose you were

moving with a velocity of 4.7 × 10−25 m/s . At this speed, it would take you about 7 million years to travel a

distance equal to the diameter of a hydrogen atom.

Check Your Understanding Would the ball’s change of momentum have been larger, smaller, or the
same, if it had collided with the floor and stopped (without bouncing)?

Would the ball’s change of momentum have been larger, smaller, or the same, if it had collided with the floor
and stopped (without bouncing)?

Example 9.8

Ice Hockey 1

Two hockey pucks of identical mass are on a flat, horizontal ice hockey rink. The red puck is motionless; the blue
puck is moving at 2.5 m/s to the left (Figure 9.18). It collides with the motionless red puck. The pucks have a
mass of 15 g. After the collision, the red puck is moving at 2.5 m/s, to the left. What is the final velocity of the
blue puck?

Figure 9.18 Two identical hockey pucks colliding. The top
diagram shows the pucks the instant before the collision, and the
bottom diagram show the pucks the instant after the collision. The
net external force is zero.

Strategy

We’re told that we have two colliding objects, we’re told the masses and initial velocities, and one final velocity;
we’re asked for both final velocities. Conservation of momentum seems like a good strategy. Define the system
to be the two pucks; there’s no friction, so we have a closed system.

Before you look at the solution, what do you think the answer will be?

The blue puck final velocity will be:

• zero
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• 2.5 m/s to the left

• 2.5 m/s to the right

• 1.25 m/s to the left

• 1.25 m/s to the right

• something else

Solution

Define the +x-direction to point to the right. Conservation of momentum then reads

p→ f = p→ i

mvrf i
^

+ mvbf
i
^

= mvri i
^

− mvbi
i
^

.

Before the collision, the momentum of the system is entirely and only in the blue puck. Thus,

mvrf i
^

+ mvbf
i
^

= −mvbi
i
^

vrf i
^

+ vbf
i
^

= −vbi
i
^

.

(Remember that the masses of the pucks are equal.) Substituting numbers:

−(2.5 m/s) i
^

+ v→ bf
= −(2.5 m/s) i

^

v→ bf
= 0.

Significance

Evidently, the two pucks simply exchanged momentum. The blue puck transferred all of its momentum to the red
puck. In fact, this is what happens in similar collision where m1 = m2.

Check Your Understanding Even if there were some friction on the ice, it is still possible to use
conservation of momentum to solve this problem, but you would need to impose an additional condition on the
problem. What is that additional condition?

Example 9.9

Landing of Philae

On November 12, 2014, the European Space Agency successfully landed a probe named Philae on Comet 67P/
Churyumov/Gerasimenko (Figure 9.19). During the landing, however, the probe actually landed three times,
because it bounced twice. Let’s calculate how much the comet’s speed changed as a result of the first bounce.
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Figure 9.19 An artist’s rendering of Philae landing on a comet. (credit: modification of work by “DLR German
Aerospace Center”/Flickr)

Let’s define upward to be the +y-direction, perpendicular to the surface of the comet, and y = 0 to be at the

surface of the comet. Here’s what we know:

• The mass of Comet 67P: Mc = 1.0 × 1013 kg

• The acceleration due to the comet’s gravity: a→ = −⎛
⎝5.0 × 10−3 m/s2⎞

⎠ j
^

• Philae’s mass: M p = 96 kg

• Initial touchdown speed: v→ 1 = −(1.0 m/s) j
^

• Initial upward speed due to first bounce: v→ 2 = (0.38 m/s) j
^

• Landing impact time: Δt = 1.3 s

Strategy

We’re asked for how much the comet’s speed changed, but we don’t know much about the comet, beyond its mass
and the acceleration its gravity causes. However, we are told that the Philae lander collides with (lands on) the
comet, and bounces off of it. A collision suggests momentum as a strategy for solving this problem.

If we define a system that consists of both Philae and Comet 67/P, then there is no net external force on this
system, and thus the momentum of this system is conserved. (We’ll neglect the gravitational force of the sun.)
Thus, if we calculate the change of momentum of the lander, we automatically have the change of momentum of
the comet. Also, the comet’s change of velocity is directly related to its change of momentum as a result of the
lander “colliding” with it.

Solution

Let p→ 1 be Philae’s momentum at the moment just before touchdown, and p→ 2 be its momentum just after

the first bounce. Then its momentum just before landing was

p→ 1 = M p v→ 1 = (96 kg)⎛⎝−1.0 m/s j
^⎞

⎠ = −⎛
⎝96 kg · m/s⎞

⎠ j
^

and just after was
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p→ 2 = M p v→ 2 = ⎛
⎝96 kg⎞

⎠
⎛
⎝+0.38 m/s j

^⎞
⎠ = ⎛

⎝36.5 kg · m/s⎞
⎠ j
^

.

Therefore, the lander’s change of momentum during the first bounce is

Δ p→ = p→ 2 − p→ 1

= ⎛
⎝36.5 kg · m/s⎞

⎠ j
^

− ⎛
⎝−96.0 kg · m/s j

^⎞
⎠ = ⎛

⎝133 kg · m/s⎞
⎠ j
^

Notice how important it is to include the negative sign of the initial momentum.

Now for the comet. Since momentum of the system must be conserved, the comet’s momentum changed by
exactly the negative of this:

Δ p→ c = −Δ p→ = −⎛
⎝133 kg · m/s⎞

⎠ j
^

.

Therefore, its change of velocity is

Δ v→ c = Δ p→ c
Mc

= −⎛
⎝133 kg · m/s⎞

⎠ j
^

1.0 × 1013 kg
= −⎛

⎝1.33 × 10−11 m/s⎞
⎠ j
^

.

Significance

This is a very small change in velocity, about a thousandth of a billionth of a meter per second. Crucially, however,
it is not zero.

Check Your Understanding The changes of momentum for Philae and for Comet 67/P were equal (in
magnitude). Were the impulses experienced by Philae and the comet equal? How about the forces? How about
the changes of kinetic energies?

9.4 | Types of Collisions

Learning Objectives

By the end of this section, you will be able to:

• Identify the type of collision

• Correctly label a collision as elastic or inelastic

• Use kinetic energy along with momentum and impulse to analyze a collision

Although momentum is conserved in all interactions, not all interactions (collisions or explosions) are the same. The
possibilities include:

• A single object can explode into multiple objects (one-to-many).

• Multiple objects can collide and stick together, forming a single object (many-to-one).

• Multiple objects can collide and bounce off of each other, remaining as multiple objects (many-to-many). If they do
bounce off each other, then they may recoil at the same speeds with which they approached each other before the
collision, or they may move off more slowly.

It’s useful, therefore, to categorize different types of interactions, according to how the interacting objects move before and
after the interaction.

One-to-Many
The first possibility is that a single object may break apart into two or more pieces. An example of this is a firecracker, or a
bow and arrow, or a rocket rising through the air toward space. These can be difficult to analyze if the number of fragments
after the collision is more than about three or four; but nevertheless, the total momentum of the system before and after the
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explosion is identical.

Note that if the object is initially motionless, then the system (which is just the object) has no momentum and no kinetic
energy. After the explosion, the net momentum of all the pieces of the object must sum to zero (since the momentum of this
closed system cannot change). However, the system will have a great deal of kinetic energy after the explosion, although it
had none before. Thus, we see that, although the momentum of the system is conserved in an explosion, the kinetic energy
of the system most definitely is not; it increases. This interaction—one object becoming many, with an increase of kinetic
energy of the system—is called an explosion.

Where does the energy come from? Does conservation of energy still hold? Yes; some form of potential energy is converted
to kinetic energy. In the case of gunpowder burning and pushing out a bullet, chemical potential energy is converted to
kinetic energy of the bullet, and of the recoiling gun. For a bow and arrow, it is elastic potential energy in the bowstring.

Many-to-One
The second possibility is the reverse: that two or more objects collide with each other and stick together, thus (after the
collision) forming one single composite object. The total mass of this composite object is the sum of the masses of the
original objects, and the new single object moves with a velocity dictated by the conservation of momentum. However, it
turns out again that, although the total momentum of the system of objects remains constant, the kinetic energy doesn’t; but
this time, the kinetic energy decreases. This type of collision is called inelastic.

In the extreme case, multiple objects collide, stick together, and remain motionless after the collision. Since the objects
are all motionless after the collision, the final kinetic energy is also zero; the loss of kinetic energy is a maximum. Such a
collision is said to be perfectly inelastic.

Many-to-Many
The extreme case on the other end is if two or more objects approach each other, collide, and bounce off each other, moving
away from each other at the same relative speed at which they approached each other. In this case, the total kinetic energy
of the system is conserved. Such an interaction is called elastic.

In any interaction of a closed system of objects, the total momentum of the system is conserved ( p→ f = p→ i) but the

kinetic energy may not be:

• If 0 < Kf < Ki , the collision is inelastic.

• If Kf = 0 , the collision is perfectly inelastic.

• If Kf = Ki , the collision is elastic.

• If Kf > Ki , the interaction is an explosion.

The point of all this is that, in analyzing a collision or explosion, you can use both momentum and kinetic energy.

Problem-Solving Strategy: Collisions

A closed system always conserves momentum; it might also conserve kinetic energy, but very often it doesn’t. Energy-
momentum problems confined to a plane (as ours are) usually have two unknowns. Generally, this approach works
well:

1. Define a closed system.

2. Write down the expression for conservation of momentum.

3. If kinetic energy is conserved, write down the expression for conservation of kinetic energy; if not, write down
the expression for the change of kinetic energy.

4. You now have two equations in two unknowns, which you solve by standard methods.
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Example 9.10

Formation of a Deuteron

A proton (mass 1.67 × 10−27 kg ) collides with a neutron (with essentially the same mass as the proton) to form

a particle called a deuteron. What is the velocity of the deuteron if it is formed from a proton moving with velocity

7.0 × 106 m/s to the left and a neutron moving with velocity 4.0 × 106 m/s to the right?

Strategy

Define the system to be the two particles. This is a collision, so we should first identify what kind. Since we are
told the two particles form a single particle after the collision, this means that the collision is perfectly inelastic.
Thus, kinetic energy is not conserved, but momentum is. Thus, we use conservation of energy to determine the
final velocity of the system.

Solution

Treat the two particles as having identical masses M. Use the subscripts p, n, and d for proton, neutron, and
deuteron, respectively. This is a one-dimensional problem, so we have

Mvp − Mvn = 2Mvd.

The masses divide out:

vp − vn = 2vd
7.0 × 106 m/s − 4.0 × 106 m/s = 2vd

vd = 1.5 × 106 m/s.

The velocity is thus v→ d = ⎛
⎝1.5 × 106 m/s⎞

⎠ i
^

.

Significance

This is essentially how particle colliders like the Large Hadron Collider work: They accelerate particles up to
very high speeds (large momenta), but in opposite directions. This maximizes the creation of so-called “daughter
particles.”

Example 9.11

Ice Hockey 2

(This is a variation of an earlier example.)

Two ice hockey pucks of different masses are on a flat, horizontal hockey rink. The red puck has a mass of 15
grams, and is motionless; the blue puck has a mass of 12 grams, and is moving at 2.5 m/s to the left. It collides
with the motionless red puck (Figure 9.20). If the collision is perfectly elastic, what are the final velocities of
the two pucks?
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Figure 9.20 Two different hockey pucks colliding. The top diagram shows the pucks
the instant before the collision, and the bottom diagram show the pucks the instant after
the collision. The net external force is zero.

Strategy

We’re told that we have two colliding objects, and we’re told their masses and initial velocities, and one final
velocity; we’re asked for both final velocities. Conservation of momentum seems like a good strategy; define the
system to be the two pucks. There is no friction, so we have a closed system. We have two unknowns (the two
final velocities), but only one equation. The comment about the collision being perfectly elastic is the clue; it
suggests that kinetic energy is also conserved in this collision. That gives us our second equation.

The initial momentum and initial kinetic energy of the system resides entirely and only in the second puck (the
blue one); the collision transfers some of this momentum and energy to the first puck.

Solution

Conservation of momentum, in this case, reads

pi = pf
m2 v2,i = m1 v1,f + m2 v2,f.

Conservation of kinetic energy reads

Ki = Kf
1
2m2 v2,i

2 = 1
2m1 v1,f

2 + 1
2m2 v2,f

2 .

There are our two equations in two unknowns. The algebra is tedious but not terribly difficult; you definitely
should work it through. The solution is

v1,f =
(m1 − m2)v1,i + 2m2 v2,i

m1 + m2

v2f =
(m2 − m1)v2,i + 2m1 v1,i

m1 + m2
.

Substituting the given numbers, we obtain

v1,f = 2.22 m
s

v2,f = −0.28 m
s .

Significance

Notice that after the collision, the blue puck is moving to the right; its direction of motion was reversed. The red
puck is now moving to the left.
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9.7 Check Your Understanding There is a second solution to the system of equations solved in this example
(because the energy equation is quadratic): v1,f = −2.5 m/s, v2,f = 0 . This solution is unacceptable on

physical grounds; what’s wrong with it?

Example 9.12

Thor vs. Iron Man

The 2012 movie “The Avengers” has a scene where Iron Man and Thor fight. At the beginning of the fight, Thor
throws his hammer at Iron Man, hitting him and throwing him slightly up into the air and against a small tree,
which breaks. From the video, Iron Man is standing still when the hammer hits him. The distance between Thor
and Iron Man is approximately 10 m, and the hammer takes about 1 s to reach Iron Man after Thor releases it.
The tree is about 2 m behind Iron Man, which he hits in about 0.75 s. Also from the video, Iron Man’s trajectory
to the tree is very close to horizontal. Assuming Iron Man’s total mass is 200 kg:

a. Estimate the mass of Thor’s hammer

b. Estimate how much kinetic energy was lost in this collision

Strategy

After the collision, Thor’s hammer is in contact with Iron Man for the entire time, so this is a perfectly inelastic
collision. Thus, with the correct choice of a closed system, we expect momentum is conserved, but not kinetic
energy. We use the given numbers to estimate the initial momentum, the initial kinetic energy, and the final kinetic
energy. Because this is a one-dimensional problem, we can go directly to the scalar form of the equations.

Solution
a. First, we posit conservation of momentum. For that, we need a closed system. The choice here is the

system (hammer + Iron Man), from the time of collision to the moment just before Iron Man and the
hammer hit the tree. Let:

◦ MH = mass of the hammer

◦ MI = mass of Iron Man

◦ vH = velocity of the hammer before hitting Iron Man

◦ v = combined velocity of Iron Man + hammer after the collision

Again, Iron Man’s initial velocity was zero. Conservation of momentum here reads:

MH vH = ⎛
⎝MH + MI

⎞
⎠v.

We are asked to find the mass of the hammer, so we have

MH vH = MH v + MI v
MH (vH − v) = MI v

MH = MI v
vH − v

=
⎛
⎝200 kg⎞

⎠
⎛
⎝

2 m
0.75 s

⎞
⎠

10 m
s − ⎛

⎝
2 m

0.75 s
⎞
⎠

= 73 kg.

Considering the uncertainties in our estimates, this should be expressed with just one significant figure;

thus, MH = 7 × 101 kg .

b. The initial kinetic energy of the system, like the initial momentum, is all in the hammer:
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Ki = 1
2MH vH

2

= 1
2

⎛
⎝70 kg⎞

⎠(10 m/s)2

= 3500 J.

After the collision,

Kf = 1
2

⎛
⎝MH + MI

⎞
⎠v2

= 1
2

⎛
⎝70 kg + 200 kg⎞

⎠(2.67 m/s⎞
⎠
2

= 960 J.

Thus, there was a loss of 3500 J − 960 J = 2540 J .

Significance

From other scenes in the movie, Thor apparently can control the hammer’s velocity with his mind. It is possible,
therefore, that he mentally causes the hammer to maintain its initial velocity of 10 m/s while Iron Man is being
driven backward toward the tree. If so, this would represent an external force on our system, so it would not be
closed. Thor’s mental control of his hammer is beyond the scope of this book, however.

Example 9.13

Analyzing a Car Crash

At a stoplight, a large truck (3000 kg) collides with a motionless small car (1200 kg). The truck comes to
an instantaneous stop; the car slides straight ahead, coming to a stop after sliding 10 meters. The measured
coefficient of friction between the car’s tires and the road was 0.62. How fast was the truck moving at the moment
of impact?

Strategy

At first it may seem we don’t have enough information to solve this problem. Although we know the initial speed
of the car, we don’t know the speed of the truck (indeed, that’s what we’re asked to find), so we don’t know
the initial momentum of the system. Similarly, we know the final speed of the truck, but not the speed of the
car immediately after impact. The fact that the car eventually slid to a speed of zero doesn’t help with the final
momentum, since an external friction force caused that. Nor can we calculate an impulse, since we don’t know
the collision time, or the amount of time the car slid before stopping. A useful strategy is to impose a restriction
on the analysis.

Suppose we define a system consisting of just the truck and the car. The momentum of this system isn’t conserved,
because of the friction between the car and the road. But if we could find the speed of the car the instant after
impact—before friction had any measurable effect on the car—then we could consider the momentum of the
system to be conserved, with that restriction.

Can we find the final speed of the car? Yes; we invoke the work-kinetic energy theorem.

Solution

First, define some variables. Let:

• Mc and MT be the masses of the car and truck, respectively

• vT,i andvT,f be the velocities of the truck before and after the collision, respectively

• vc,i andvc,f Z be the velocities of the car before and after the collision, respectively

• Ki and Kf be the kinetic energies of the car immediately after the collision, and after the car has stopped

sliding (so Kf = 0 ).
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• d be the distance the car slides after the collision before eventually coming to a stop.

Since we actually want the initial speed of the truck, and since the truck is not part of the work-energy calculation,
let’s start with conservation of momentum. For the car + truck system, conservation of momentum reads

pi = pf
Mc vc,i + MT vT,i = Mc vc,f + MT vT,f.

Since the car’s initial velocity was zero, as was the truck’s final velocity, this simplifies to

vT,i = Mc
MT

vc,f.

So now we need the car’s speed immediately after impact. Recall that

W = ΔK

where

ΔK = Kf − Ki

= 0 − 1
2Mc vc,f

2 .

Also,

W = F→ · d→ = Fdcosθ.

The work is done over the distance the car slides, which we’ve called d. Equating:

Fdcosθ = − 1
2Mc vc,f

2 .

Friction is the force on the car that does the work to stop the sliding. With a level road, the friction force is

F = µkMcg.

Since the angle between the directions of the friction force vector and the displacement d is 180° , and

cos(180°) = –1, we have

−⎛
⎝µkMcg⎞

⎠d = − 1
2Mc vc,f

2

(Notice that the car’s mass divides out; evidently the mass of the car doesn’t matter.)

Solving for the car’s speed immediately after the collision gives

vc,f = 2µk gd.

Substituting the given numbers:

vc,f = 2(0.62)⎛⎝9.81 m
s2

⎞
⎠(10 m)

= 11.0 m/s.

.

Now we can calculate the initial speed of the truck:

vT,i = ⎛
⎝
1200 kg
3000 kg

⎞
⎠

⎛
⎝11.0 m

s
⎞
⎠ = 4.4 m/s.

Significance

This is an example of the type of analysis done by investigators of major car accidents. A great deal of legal and
financial consequences depend on an accurate analysis and calculation of momentum and energy.
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9.8 Check Your Understanding Suppose there had been no friction (the collision happened on ice); that
would make µk zero, and thus vc,f = 2µk gd = 0 , which is obviously wrong. What is the mistake in this

conclusion?

Subatomic Collisions and Momentum
Conservation of momentum is crucial to our understanding of atomic and subatomic particles because much of what we
know about these particles comes from collision experiments.

At the beginning of the twentieth century, there was considerable interest in, and debate about, the structure of the atom.
It was known that atoms contain two types of electrically charged particles: negatively charged electrons and positively
charged protons. (The existence of an electrically neutral particle was suspected, but would not be confirmed until 1932.)
The question was, how were these particles arranged in the atom? Were they distributed uniformly throughout the volume
of the atom (as J.J. Thomson proposed), or arranged at the corners of regular polygons (which was Gilbert Lewis’ model),
or rings of negative charge that surround the positively charged nucleus—rather like the planetary rings surrounding Saturn
(as suggested by Hantaro Nagaoka), or something else?

The New Zealand physicist Ernest Rutherford (along with the German physicist Hans Geiger and the British physicist
Ernest Marsden) performed the crucial experiment in 1909. They bombarded a thin sheet of gold foil with a beam of high-
energy (that is, high-speed) alpha-particles (the nucleus of a helium atom). The alpha-particles collided with the gold atoms,
and their subsequent velocities were detected and analyzed, using conservation of momentum and conservation of energy.

If the charges of the gold atoms were distributed uniformly (per Thomson), then the alpha-particles should collide with them
and nearly all would be deflected through many angles, all small; the Nagaoka model would produce a similar result. If the
atoms were arranged as regular polygons (Lewis), the alpha-particles would deflect at a relatively small number of angles.

What actually happened is that nearly none of the alpha-particles were deflected. Those that were, were deflected at large
angles, some close to 180° —those alpha-particles reversed direction completely (Figure 9.21). None of the existing

atomic models could explain this. Eventually, Rutherford developed a model of the atom that was much closer to what we
now have—again, using conservation of momentum and energy as his starting point.
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Figure 9.21 The Thomson and Rutherford models of the atom. The Thomson model predicted that nearly all of the incident
alpha-particles would be scattered and at small angles. Rutherford and Geiger found that nearly none of the alpha particles were
scattered, but those few that were deflected did so through very large angles. The results of Rutherford’s experiments were
inconsistent with the Thomson model. Rutherford used conservation of momentum and energy to develop a new, and better
model of the atom—the nuclear model.

9.5 | Collisions in Multiple Dimensions

Learning Objectives

By the end of this section, you will be able to:

• Express momentum as a two-dimensional vector

• Write equations for momentum conservation in component form

• Calculate momentum in two dimensions, as a vector quantity

It is far more common for collisions to occur in two dimensions; that is, the angle between the initial velocity vectors is
neither zero nor 180° . Let’s see what complications arise from this.

The first idea we need is that momentum is a vector; like all vectors, it can be expressed as a sum of perpendicular
components (usually, though not always, an x-component and a y-component, and a z-component if necessary). Thus, when
we write down the statement of conservation of momentum for a problem, our momentum vectors can be, and usually will
be, expressed in component form.

The second idea we need comes from the fact that momentum is related to force:
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F→ = d p→
dt .

Expressing both the force and the momentum in component form,

Fx = dpx
dt , Fy =

dpy
dt , Fz = dpz

dt .

Remember, these equations are simply Newton’s second law, in vector form and in component form. We know that
Newton’s second law is true in each direction, independently of the others. It follows therefore (via Newton’s third law) that
conservation of momentum is also true in each direction independently.

These two ideas motivate the solution to two-dimensional problems: We write down the expression for conservation of
momentum twice: once in the x-direction and once in the y-direction.

(9.18)pf, x = p1,i, x + p2,i, x
pf, y = p1,i, y + p2,i, y

This procedure is shown graphically in Figure 9.22.
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Figure 9.22 (a) For two-dimensional momentum problems,
break the initial momentum vectors into their x- and
y-components. (b) Add the x- and y-components together
separately. This gives you the x- and y-components of the final
momentum, which are shown as red dashed vectors. (c) Adding
these components together gives the final momentum.

We solve each of these two component equations independently to obtain the x- and y-components of the desired velocity
vector:

vf, x =
m1 v1,i, x + m2 v2,i, x

m

vf, y =
m1 v1,i, y + m2 v2,i, y

m .

(Here, m represents the total mass of the system.) Finally, combine these components using the Pythagorean theorem,

vf = | v→ f| = vf, x
2 + vf, y

2 .
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Problem-Solving Strategy: Conservation of Momentum in Two Dimensions

The method for solving a two-dimensional (or even three-dimensional) conservation of momentum problem is
generally the same as the method for solving a one-dimensional problem, except that you have to conserve momentum
in both (or all three) dimensions simultaneously:

1. Identify a closed system.

2. Write down the equation that represents conservation of momentum in the x-direction, and solve it for the
desired quantity. If you are calculating a vector quantity (velocity, usually), this will give you the x-component
of the vector.

3. Write down the equation that represents conservation of momentum in the y-direction, and solve. This will give
you the y-component of your vector quantity.

4. Assuming you are calculating a vector quantity, use the Pythagorean theorem to calculate its magnitude, using
the results of steps 3 and 4.

Example 9.14

Traffic Collision

A small car of mass 1200 kg traveling east at 60 km/hr collides at an intersection with a truck of mass 3000 kg
that is traveling due north at 40 km/hr (Figure 9.23). The two vehicles are locked together. What is the velocity
of the combined wreckage?

Figure 9.23 A large truck moving north is about to collide with a small car
moving east. The final momentum vector has both x- and y-components.

Strategy

First off, we need a closed system. The natural system to choose is the (car + truck), but this system is not closed;
friction from the road acts on both vehicles. We avoid this problem by restricting the question to finding the
velocity at the instant just after the collision, so that friction has not yet had any effect on the system. With that
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restriction, momentum is conserved for this system.

Since there are two directions involved, we do conservation of momentum twice: once in the x-direction and once
in the y-direction.

Solution

Before the collision the total momentum is

p→ = mc v→ c + mT v→ T.

After the collision, the wreckage has momentum

p→ = (mc + mT) v→ w.

Since the system is closed, momentum must be conserved, so we have

mc v→ c + mT v→ T = (mc + mT) v→ w.

We have to be careful; the two initial momenta are not parallel. We must add vectorially (Figure 9.24).

Figure 9.24 Graphical addition of momentum vectors. Notice
that, although the car’s velocity is larger than the truck’s, its
momentum is smaller.

If we define the +x-direction to point east and the +y-direction to point north, as in the figure, then (conveniently),

p→ c = pc i
^

= mc vc i
^

p→ T = pT j
^

= mT vT j
^

.

Therefore, in the x-direction:

mc vc = (mc + mT)vw, x

vw, x = ⎛
⎝

mc
mc + mT

⎞
⎠vc

and in the y-direction:

mT vT = (mc + mT)vw, y

vw, y = ⎛
⎝

mT
mc + mT

⎞
⎠vT.

Applying the Pythagorean theorem gives
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9.9

| v→ w| = ⎡
⎣
⎛
⎝

mc
mc + mt

⎞
⎠vc

⎤
⎦

2
+ ⎡

⎣
⎛
⎝

mt
mc + mt

⎞
⎠vt

⎤
⎦

2

= ⎡
⎣
⎛
⎝
1200 kg
4200 kg

⎞
⎠

⎛
⎝16.67 m

s
⎞
⎠
⎤
⎦

2
+ ⎡

⎣
⎛
⎝
3000 kg
4200 kg

⎞
⎠

⎛
⎝11.1 m

s
⎞
⎠
⎤
⎦

2

= ⎛
⎝4.76 m

s
⎞
⎠
2

+ ⎛
⎝7.93 m

s
⎞
⎠
2

= 9.25 m
s ≈ 33.3 km

hr .

As for its direction, using the angle shown in the figure,

θ = tan−1 ⎛
⎝
vw, x
vw, y

⎞
⎠ = tan−1 ⎛

⎝
7.93 m/s
4.76 m/s

⎞
⎠ = 59°.

This angle is east of north, or 31° counterclockwise from the +x-direction.

Significance

As a practical matter, accident investigators usually work in the “opposite direction”; they measure the distance
of skid marks on the road (which gives the stopping distance) and use the work-energy theorem along with
conservation of momentum to determine the speeds and directions of the cars prior to the collision. We saw that
analysis in an earlier section.

Check Your Understanding Suppose the initial velocities were not at right angles to each other. How
would this change both the physical result and the mathematical analysis of the collision?

Example 9.15

Exploding Scuba Tank

A common scuba tank is an aluminum cylinder that weighs 31.7 pounds empty (Figure 9.25). When full of
compressed air, the internal pressure is between 2500 and 3000 psi (pounds per square inch). Suppose such a
tank, which had been sitting motionless, suddenly explodes into three pieces. The first piece, weighing 10 pounds,
shoots off horizontally at 235 miles per hour; the second piece (7 pounds) shoots off at 172 miles per hour, also in
the horizontal plane, but at a 19° angle to the first piece. What is the mass and initial velocity of the third piece?

(Do all work, and express your final answer, in SI units.)

Figure 9.25 A scuba tank explodes into three pieces.

Strategy

To use conservation of momentum, we need a closed system. If we define the system to be the scuba tank, this is
not a closed system, since gravity is an external force. However, the problem asks for the just the initial velocity
of the third piece, so we can neglect the effect of gravity and consider the tank by itself as a closed system. Notice
that, for this system, the initial momentum vector is zero.

We choose a coordinate system where all the motion happens in the xy-plane. We then write down the equations
for conservation of momentum in each direction, thus obtaining the x- and y-components of the momentum of the
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third piece, from which we obtain its magnitude (via the Pythagorean theorem) and its direction. Finally, dividing
this momentum by the mass of the third piece gives us the velocity.

Solution

First, let’s get all the conversions to SI units out of the way:

31.7 lb × 1 kg
2.2 lb → 14.4 kg

10 lb → 4.5 kg
235 miles

hour × 1 hour
3600 s × 1609 m

mile = 105 m
s

7 lb → 3.2 kg
172 mile

hour = 77 m
s

m3 = 14.4 kg − ⎛
⎝4.5 kg + 3.2 kg⎞

⎠ = 6.7 kg.

Now apply conservation of momentum in each direction.

x-direction:

pf,x = p0,x
p1,x + p2,x + p3,x = 0

m1 v1,x + m2 v2,x + p3,x = 0
p3,x = −m1 v1,x − m2 v2,x

y-direction:

pf,y = p0,y

p1,y + p2,y + p3,y = 0

m1 v1,y + m2 v2,y + p3,y = 0
p3,y = −m1 v1,y − m2 v2,y

From our chosen coordinate system, we write the x-components as
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9.10

p3, x = −m1 v1 − m2 v2 cosθ

= −⎛
⎝14.5 kg⎞

⎠
⎛
⎝105 m

s
⎞
⎠ − ⎛

⎝4.5 kg⎞
⎠
⎛
⎝77 m

s
⎞
⎠cos(19°)

= −1850kg · m
s .

For the y-direction, we have

p3y = 0 − m2 v2 sinθ

= −⎛
⎝4.5 kg⎞

⎠
⎛
⎝77 m

s
⎞
⎠sin(19°)

= −113 kg · m
s .

This gives the magnitude of p3 :

p3 = p3,x
2 + p3,y

2

= ⎛
⎝−1850 kg · m

s
⎞
⎠

2
+ ⎛

⎝−113 kg · m
s

⎞
⎠

= 1854 kg · m
s .

The velocity of the third piece is therefore

v3 = p3
m3

= 1854 kg · m
s

6.7 kg = 277 m
s .

The direction of its velocity vector is the same as the direction of its momentum vector:

ϕ = tan−1 ⎛
⎝
p3,y
p3,x

⎞
⎠ = tan−1

⎛

⎝
⎜ 113 kg · m

s

1850 kg · m
s

⎞

⎠
⎟ = 3.5°.

Because ϕ is below the −x -axis, the actual angle is 183.5° from the +x-direction.

Significance

The enormous velocities here are typical; an exploding tank of any compressed gas can easily punch through
the wall of a house and cause significant injury, or death. Fortunately, such explosions are extremely rare, on a
percentage basis.

Check Your Understanding Notice that the mass of the air in the tank was neglected in the analysis and
solution. How would the solution method changed if the air was included? How large a difference do you think
it would make in the final answer?

9.6 | Center of Mass

Learning Objectives

By the end of this section, you will be able to:

• Explain the meaning and usefulness of the concept of center of mass

• Calculate the center of mass of a given system

• Apply the center of mass concept in two and three dimensions

• Calculate the velocity and acceleration of the center of mass

We have been avoiding an important issue up to now: When we say that an object moves (more correctly, accelerates) in a
way that obeys Newton’s second law, we have been ignoring the fact that all objects are actually made of many constituent
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particles. A car has an engine, steering wheel, seats, passengers; a football is leather and rubber surrounding air; a brick is
made of atoms. There are many different types of particles, and they are generally not distributed uniformly in the object.
How do we include these facts into our calculations?

Then too, an extended object might change shape as it moves, such as a water balloon or a cat falling (Figure 9.26). This
implies that the constituent particles are applying internal forces on each other, in addition to the external force that is acting
on the object as a whole. We want to be able to handle this, as well.

Figure 9.26 As the cat falls, its body performs complicated motions so it can land on its feet,
but one point in the system moves with the simple uniform acceleration of gravity.

The problem before us, then, is to determine what part of an extended object is obeying Newton’s second law when an
external force is applied and to determine how the motion of the object as a whole is affected by both the internal and
external forces.

Be warned: To treat this new situation correctly, we must be rigorous and completely general. We won’t make any
assumptions about the nature of the object, or of its constituent particles, or either the internal or external forces. Thus, the
arguments will be complex.

Internal and External Forces
Suppose we have an extended object of mass M, made of N interacting particles. Let’s label their masses as m j , where

j = 1, 2, 3, …, N . Note that

(9.19)
M = ∑

j = 1

N
m j.

If we apply some net external force F→ ext on the object, every particle experiences some “share” or some fraction of that

external force. Let:

f
→

j
ext

= the fraction of the external force that the jth particle experiences.

Notice that these fractions of the total force are not necessarily equal; indeed, they virtually never are. (They can be, but
they usually aren’t.) In general, therefore,

f
→

1
ext

≠ f
→

2
ext ≠ ⋯ ≠ f

→
N
ext.

Next, we assume that each of the particles making up our object can interact (apply forces on) every other particle of the
object. We won’t try to guess what kind of forces they are; but since these forces are the result of particles of the object

acting on other particles of the same object, we refer to them as internal forces f
→

j
int

; thus:
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f
→

j
int = the net internal force that the jth particle experiences from all the other particles that make up the object.

Now, the net force, internal plus external, on the jth particle is the vector sum of these:

(9.20)f
→

j = f
→

j
int + f

→
j
ext.

where again, this is for all N particles; j = 1, 2, 3, … , N .

As a result of this fractional force, the momentum of each particle gets changed:

(9.21)
f

→
j =

d p→ j
dt

f
→

j
int + f

→
j
ext =

d p→ j
dt .

The net force F→ on the object is the vector sum of these forces:

(9.22)
F→ net = ∑

j = 1

N
⎛
⎝ f

→
j
int + f

→
j
ext⎞

⎠

= ∑
j = 1

N
f

→
j
int + ∑

j = 1

N
f

→
j
ext.

This net force changes the momentum of the object as a whole, and the net change of momentum of the object must be the
vector sum of all the individual changes of momentum of all of the particles:

(9.23)
F→ net = ∑

j = 1

N d p→ j
dt .

Combining Equation 9.22 and Equation 9.23 gives

(9.24)
∑
j = 1

N
f

→
j
int + ∑

j = 1

N
f

→
j
ext = ∑

j = 1

N d p→ j
dt .

Let’s now think about these summations. First consider the internal forces term; remember that each f
→

j
int

is the force

on the jth particle from the other particles in the object. But by Newton’s third law, for every one of these forces, there
must be another force that has the same magnitude, but the opposite sign (points in the opposite direction). These forces do
not cancel; however, that’s not what we’re doing in the summation. Rather, we’re simply mathematically adding up all the
internal force vectors. That is, in general, the internal forces for any individual part of the object won’t cancel, but when all
the internal forces are added up, the internal forces must cancel in pairs. It follows, therefore, that the sum of all the internal
forces must be zero:

∑
j = 1

N
f

→
j
int = 0.

(This argument is subtle, but crucial; take plenty of time to completely understand it.)

For the external forces, this summation is simply the total external force that was applied to the whole object:

∑
j = 1

N
f

→
j
ext = F→ ext.

As a result,

(9.25)
F→ ext = ∑

j = 1

N d p→ j
dt .
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This is an important result. Equation 9.25 tells us that the total change of momentum of the entire object (all N particles)
is due only to the external forces; the internal forces do not change the momentum of the object as a whole. This is why
you can’t lift yourself in the air by standing in a basket and pulling up on the handles: For the system of you + basket, your
upward pulling force is an internal force.

Force and Momentum
Remember that our actual goal is to determine the equation of motion for the entire object (the entire system of particles).
To that end, let’s define:

p→ CM = the total momentum of the system of N particles (the reason for the subscript will become clear shortly)

Then we have

p→ CM ≡ ∑
j = 1

N
p→ j,

and therefore Equation 9.25 can be written simply as

(9.26)
F→ = d p→ CM

dt .

Since this change of momentum is caused by only the net external force, we have dropped the “ext” subscript.

This is Newton’s second law, but now for the entire extended object. If this feels a bit anticlimactic, remember what is

hiding inside it: p→ CM is the vector sum of the momentum of (in principle) hundreds of thousands of billions of billions

of particles (6.02 × 1023) , all caused by one simple net external force—a force that you can calculate.

Center of Mass
Our next task is to determine what part of the extended object, if any, is obeying Equation 9.26.

It’s tempting to take the next step; does the following equation mean anything?

(9.27)F→ = M a→

If it does mean something (acceleration of what, exactly?), then we could write

M a→ = d p→ CM
dt

and thus

M a→ = ∑
j = 1

N d p→ j
dt = d

dt ∑
j = 1

N
p→ j.

which follows because the derivative of a sum is equal to the sum of the derivatives.

Now, p→ j is the momentum of the jth particle. Defining the positions of the constituent particles (relative to some

coordinate system) as r→ j = ⎛
⎝x j, y j, z j

⎞
⎠ , we thus have

p→ j = m j v→ j = m j
d r→ j
dt .

Substituting back, we obtain
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M a→ = d
dt ∑

j = 1

N
m j

d r→ j
dt

= d2

dt2
∑
j = 1

N
m j r→ j.

Dividing both sides by M (the total mass of the extended object) gives us

(9.28)
a→ = d2

dt2
⎛

⎝
⎜ 1
M ∑

j = 1

N
m j r→ j

⎞

⎠
⎟.

Thus, the point in the object that traces out the trajectory dictated by the applied force in Equation 9.27 is inside the
parentheses in Equation 9.28.

Looking at this calculation, notice that (inside the parentheses) we are calculating the product of each particle’s mass with
its position, adding all N of these up, and dividing this sum by the total mass of particles we summed. This is reminiscent
of an average; inspired by this, we’ll (loosely) interpret it to be the weighted average position of the mass of the extended
object. It’s actually called the center of mass of the object. Notice that the position of the center of mass has units of meters;
that suggests a definition:

(9.29)
r→ CM ≡ 1

M ∑
j = 1

N
m j r→ j.

So, the point that obeys Equation 9.26 (and therefore Equation 9.27 as well) is the center of mass of the object, which

is located at the position vector r→ CM .

It may surprise you to learn that there does not have to be any actual mass at the center of mass of an object. For example, a
hollow steel sphere with a vacuum inside it is spherically symmetrical (meaning its mass is uniformly distributed about the
center of the sphere); all of the sphere’s mass is out on its surface, with no mass inside. But it can be shown that the center
of mass of the sphere is at its geometric center, which seems reasonable. Thus, there is no mass at the position of the center
of mass of the sphere. (Another example is a doughnut.) The procedure to find the center of mass is illustrated in Figure
9.27.
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Figure 9.27 Finding the center of mass of a system of three different particles. (a) Position
vectors are created for each object. (b) The position vectors are multiplied by the mass of the
corresponding object. (c) The scaled vectors from part (b) are added together. (d) The final vector
is divided by the total mass. This vector points to the center of mass of the system. Note that no
mass is actually present at the center of mass of this system.

Since r→ j = x j i
^

+ y j j
^

+ z j k̂ , it follows that:

(9.30)
rCM,x = 1

M ∑
j = 1

N
m jx j

(9.31)
rCM, y = 1

M ∑
j = 1

N
m jy j

(9.32)
rCM, z = 1

M ∑
j = 1

N
m jz j

and thus

r→ CM = rCM,x i
^

+ rCM,y j
^

+ rCM,z k̂

rCM = | r→ CM| = ⎛
⎝rCM,x

2 + rCM,y
2 + rCM,z

2 ⎞
⎠
1/2

.
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Therefore, you can calculate the components of the center of mass vector individually.

Finally, to complete the kinematics, the instantaneous velocity of the center of mass is calculated exactly as you might
suspect:

(9.33)
v→ CM = d

dt
⎛

⎝
⎜ 1
M ∑

j = 1

N
m j r→ j

⎞

⎠
⎟ = 1

M ∑
j = 1

N
m j v→ j

and this, like the position, has x-, y-, and z-components.

To calculate the center of mass in actual situations, we recommend the following procedure:

Problem-Solving Strategy: Calculating the Center of Mass

The center of mass of an object is a position vector. Thus, to calculate it, do these steps:

1. Define your coordinate system. Typically, the origin is placed at the location of one of the particles. This is not
required, however.

2. Determine the x, y, z-coordinates of each particle that makes up the object.

3. Determine the mass of each particle, and sum them to obtain the total mass of the object. Note that the mass of
the object at the origin must be included in the total mass.

4. Calculate the x-, y-, and z-components of the center of mass vector, using Equation 9.30, Equation 9.31,
and Equation 9.32.

5. If required, use the Pythagorean theorem to determine its magnitude.

Here are two examples that will give you a feel for what the center of mass is.

Example 9.16

Center of Mass of the Earth-Moon System

Using data from text appendix, determine how far the center of mass of the Earth-moon system is from the center
of Earth. Compare this distance to the radius of Earth, and comment on the result. Ignore the other objects in the
solar system.

Strategy

We get the masses and separation distance of the Earth and moon, impose a coordinate system, and use Equation
9.29 with just N = 2 objects. We use a subscript “e” to refer to Earth, and subscript “m” to refer to the moon.

Solution

Define the origin of the coordinate system as the center of Earth. Then, with just two objects, Equation 9.29
becomes

R = me re + mm rm
me + mm

.

From Appendix D,

me = 5.97 × 1024 kg

mm = 7.36 × 1022 kg

rm = 3.82 × 105 m.

We defined the center of Earth as the origin, so re = 0 m . Inserting these into the equation for R gives
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9.11

R =
⎛
⎝5.97 × 1024 kg⎞

⎠(0 m) + ⎛
⎝7.36 × 1022 kg⎞

⎠
⎛
⎝3.82 × 108 m⎞

⎠

5.98 × 1024 kg + 7.36 × 1022 kg

= 4.64 × 106 m.

Significance

The radius of Earth is 6.37 × 106 m , so the center of mass of the Earth-moon system is (6.37 − 4.64)

× 106 m = 1.73 × 106 m = 1730 km (roughly 1080 miles) below the surface of Earth. The location of the

center of mass is shown (not to scale).

Check Your Understanding Suppose we included the sun in the system. Approximately where would
the center of mass of the Earth-moon-sun system be located? (Feel free to actually calculate it.)

Example 9.17

Center of Mass of a Salt Crystal

Figure 9.28 shows a single crystal of sodium chloride—ordinary table salt. The sodium and chloride ions form
a single unit, NaCl. When multiple NaCl units group together, they form a cubic lattice. The smallest possible
cube (called the unit cell) consists of four sodium ions and four chloride ions, alternating. The length of one edge

of this cube (i.e., the bond length) is 2.36 × 10−10 m . Find the location of the center of mass of the unit cell.

Specify it either by its coordinates ⎛
⎝rCM,x, rCM,y, rCM,z

⎞
⎠ , or by rCM and two angles.
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Figure 9.28 A drawing of a sodium chloride (NaCl) crystal.

Strategy

We can look up all the ion masses. If we impose a coordinate system on the unit cell, this will give us the
positions of the ions. We can then apply Equation 9.30, Equation 9.31, and Equation 9.32 (along with the
Pythagorean theorem).

Solution

Define the origin to be at the location of the chloride ion at the bottom left of the unit cell. Figure 9.29 shows
the coordinate system.

Figure 9.29 A single unit cell of a NaCl crystal.

There are eight ions in this crystal, so N = 8:

r→ CM = 1
M ∑

j = 1

8
m j r→ j.
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The mass of each of the chloride ions is

35.453u × 1.660 × 10−27 kg
u = 5.885 × 10−26 kg

so we have

m1 = m3 = m6 = m8 = 5.885 × 10−26 kg.

For the sodium ions,

m2 = m4 = m5 = m7 = 3.816 × 10−26 kg.

The total mass of the unit cell is therefore

M = (4)⎛
⎝5.885 × 10−26 kg⎞

⎠ + (4)⎛
⎝3.816 × 10−26 kg⎞

⎠ = 3.880 × 10−25 kg.

From the geometry, the locations are

r→ 1 = 0

r→ 2 = ⎛
⎝2.36 × 10−10 m⎞

⎠ i
^

r→ 3 = r3x i
^

+ r3y j
^

= ⎛
⎝2.36 × 10−10 m⎞

⎠ i
^

+ ⎛
⎝2.36 × 10−10 m⎞

⎠ j
^

r→ 4 = ⎛
⎝2.36 × 10−10 m⎞

⎠ j
^

r→ 5 = ⎛
⎝2.36 × 10−10 m⎞

⎠ k→

r→ 6 = r6x i
^

+ r6z k̂ = ⎛
⎝2.36 × 10−10 m⎞

⎠ i
^

+ ⎛
⎝2.36 × 10−10 m⎞

⎠k̂

r→ 7 = r7x i
^

+ r7y j
^

+ r7z k̂ = ⎛
⎝2.36 × 10−10 m⎞

⎠ i
^

+ ⎛
⎝2.36 × 10−10 m⎞

⎠ j
^

+ ⎛
⎝2.36 × 10−10 m⎞

⎠k̂

r→ 8 = r8y j
^

+ r8z k̂ = ⎛
⎝2.36 × 10−10 m⎞

⎠ j
^

+ ⎛
⎝2.36 × 10−10 m⎞

⎠k̂ .

Substituting:

| r→ CM,x| = rCM,x
2 + rCM,y

2 + rCM,z
2

= 1
M ∑

j = 1

8
m j(rx) j

= 1
M (m1 r1x + m2 r2x + m3 r3x + m4 r4x + m5 r5x + m6 r6x + m7 r7x + m8 r8x)

= 1
3.8804 × 10−25 kg

⎡
⎣
⎛
⎝5.885 × 10−26 kg⎞

⎠(0 m) + ⎛
⎝3.816 × 10−26 kg⎞

⎠
⎛
⎝2.36 × 10−10 m⎞

⎠

+⎛
⎝5.885 × 10−26 kg⎞

⎠
⎛
⎝2.36 × 10−10 m⎞

⎠

+⎛
⎝3.816 × 10−26 kg⎞

⎠
⎛
⎝2.36 × 10−10 m⎞

⎠ + 0 + 0

+⎛
⎝3.816 × 10−26 kg⎞

⎠
⎛
⎝2.36 × 10−10 m⎞

⎠ + 0⎤
⎦

= 1.18 × 10−10 m.

Similar calculations give rCM,y = rCM,z = 1.18 × 10−10 m (you could argue that this must be true, by

symmetry, but it’s a good idea to check).

Significance

As it turns out, it was not really necessary to convert the mass from atomic mass units (u) to kilograms, since the
units divide out when calculating rCM anyway.
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9.12

To express rCM in terms of magnitude and direction, first apply the three-dimensional Pythagorean theorem to

the vector components:

rCM = rCM,x
2 + rCM,y

2 + rCM,z
2

= ⎛
⎝1.18 × 10−10 m⎞

⎠ 3

= 2.044 × 10−10 m.

Since this is a three-dimensional problem, it takes two angles to specify the direction of r→ CM . Let ϕ be the

angle in the x,y-plane, measured from the +x-axis, counterclockwise as viewed from above; then:

ϕ = tan−1 ⎛
⎝
rCM,y
rCM,x

⎞
⎠ = 45°.

Let θ be the angle in the y,z-plane, measured downward from the +z-axis; this is (not surprisingly):

θ = tan−1 ⎛
⎝
Rz
Ry

⎞
⎠ = 45°.

Thus, the center of mass is at the geometric center of the unit cell. Again, you could argue this on the basis of
symmetry.

Check Your Understanding Suppose you have a macroscopic salt crystal (that is, a crystal that is large
enough to be visible with your unaided eye). It is made up of a huge number of unit cells. Is the center of mass
of this crystal necessarily at the geometric center of the crystal?

Two crucial concepts come out of these examples:

1. As with all problems, you must define your coordinate system and origin. For center-of-mass calculations, it often
makes sense to choose your origin to be located at one of the masses of your system. That choice automatically
defines its distance in Equation 9.29 to be zero. However, you must still include the mass of the object at your
origin in your calculation of M, the total mass Equation 9.19. In the Earth-moon system example, this means
including the mass of Earth. If you hadn’t, you’d have ended up with the center of mass of the system being at the
center of the moon, which is clearly wrong.

2. In the second example (the salt crystal), notice that there is no mass at all at the location of the center of mass. This
is an example of what we stated above, that there does not have to be any actual mass at the center of mass of an
object.

Center of Mass of Continuous Objects
If the object in question has its mass distributed uniformly in space, rather than as a collection of discrete particles, then
m j → dm , and the summation becomes an integral:

(9.34)r→ CM = 1
M∫ r→ dm.

In this context, r is a characteristic dimension of the object (the radius of a sphere, the length of a long rod). To generate
an integrand that can actually be calculated, you need to express the differential mass element dm as a function of the mass
density of the continuous object, and the dimension r. An example will clarify this.
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Example 9.18

CM of a Uniform Thin Hoop

Find the center of mass of a uniform thin hoop (or ring) of mass M and radius r.

Strategy

First, the hoop’s symmetry suggests the center of mass should be at its geometric center. If we define our
coordinate system such that the origin is located at the center of the hoop, the integral should evaluate to zero.

We replace dm with an expression involving the density of the hoop and the radius of the hoop. We then have
an expression we can actually integrate. Since the hoop is described as “thin,” we treat it as a one-dimensional
object, neglecting the thickness of the hoop. Therefore, its density is expressed as the number of kilograms of
material per meter. Such a density is called a linear mass density, and is given the symbol λ ; this is the Greek

letter “lambda,” which is the equivalent of the English letter “l” (for “linear”).

Since the hoop is described as uniform, this means that the linear mass density λ is constant. Thus, to get our

expression for the differential mass element dm, we multiply λ by a differential length of the hoop, substitute,

and integrate (with appropriate limits for the definite integral).

Solution

First, define our coordinate system and the relevant variables (Figure 9.30).

Figure 9.30 Finding the center of mass of a uniform hoop. We express
the coordinates of a differential piece of the hoop, and then integrate
around the hoop.

The center of mass is calculated with Equation 9.34:

r→ CM = 1
M∫

a

b
r→ dm.

We have to determine the limits of integration a and b. Expressing r→ in component form gives us
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r→ CM = 1
M

⌠
⌡a

b⎡
⎣(rcosθ) i

^
+ (rsinθ) j

^⎤
⎦dm.

In the diagram, we highlighted a piece of the hoop that is of differential length ds; it therefore has a differential
mass dm = λds . Substituting:

r→ CM = 1
M

⌠
⌡a

b⎡
⎣(rcosθ) i

^
+ (rsinθ) j

^⎤
⎦λds.

However, the arc length ds subtends a differential angle dθ , so we have

ds = rdθ

and thus

r→ CM = 1
M

⌠
⌡a

b⎡
⎣(rcosθ) i

^
+ (rsinθ) j

^⎤
⎦λrdθ.

One more step: Since λ is the linear mass density, it is computed by dividing the total mass by the length of the

hoop:

λ = M
2πr

giving us

r→ CM = 1
M

⌠
⌡a

b⎡
⎣(rcosθ) i

^
+ (rsinθ) j

^⎤
⎦

⎛
⎝
M

2πr
⎞
⎠rdθ

= 1
2π

⌠
⌡a

b⎡
⎣(rcosθ) i

^
+ (rsinθ) j

^⎤
⎦dθ.

Notice that the variable of integration is now the angle θ . This tells us that the limits of integration (around the

circular hoop) are θ = 0 to θ = 2π , so a = 0 and b = 2π . Also, for convenience, we separate the integral into

the x- and y-components of r→ CM . The final integral expression is

r→ CM = rCM,x i
^

+ rCM,y j
^

=
⎡

⎣
⎢ 1

2π∫
0

2π
(rcosθ)dθ

⎤

⎦
⎥ i

^
+

⎡

⎣
⎢ 1

2π∫
0

2π
(rsinθ)dθ

⎤

⎦
⎥ j

^

= 0 i
^

+ 0 j
^

= 0
→

as expected.

Center of Mass and Conservation of Momentum
How does all this connect to conservation of momentum?

Suppose you have N objects with masses m1, m2, m3, ...mN and initial velocities v→ 1, v→ 2, v→ 3, ..., v→ N . The

center of mass of the objects is

r→ CM = 1
M ∑

j = 1

N
m j r→ j.

Its velocity is
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(9.35)
v→ CM = d r→ CM

dt = 1
M ∑

j = 1

N
m j

d r→ j
dt

and thus the initial momentum of the center of mass is

⎡

⎣
⎢Md r→ CM

dt
⎤

⎦
⎥i = ∑

j = 1

N
m j

d r→ j, i
dt

M v→ CM,i = ∑
j = 1

N
m j v→ j, i.

After these masses move and interact with each other, the momentum of the center of mass is

M v→ CM,f = ∑
j = 1

N
m j v→ j, f.

But conservation of momentum tells us that the right-hand side of both equations must be equal, which says

(9.36)M v→ CM,f = M v→ CM,i.

This result implies that conservation of momentum is expressed in terms of the center of mass of the system. Notice
that as an object moves through space with no net external force acting on it, an individual particle of the object may
accelerate in various directions, with various magnitudes, depending on the net internal force acting on that object at any
time. (Remember, it is only the vector sum of all the internal forces that vanishes, not the internal force on a single particle.)
Thus, such a particle’s momentum will not be constant—but the momentum of the entire extended object will be, in accord
with Equation 9.36.

Equation 9.36 implies another important result: Since M represents the mass of the entire system of particles, it is
necessarily constant. (If it isn’t, we don’t have a closed system, so we can’t expect the system’s momentum to be conserved.)
As a result, Equation 9.36 implies that, for a closed system,

(9.37)v→ CM,f = v→ CM,i.

That is to say, in the absence of an external force, the velocity of the center of mass never changes.

You might be tempted to shrug and say, “Well yes, that’s just Newton’s first law,” but remember that Newton’s first law
discusses the constant velocity of a particle, whereas Equation 9.37 applies to the center of mass of a (possibly vast)
collection of interacting particles, and that there may not be any particle at the center of mass at all! So, this really is a
remarkable result.

Example 9.19

Fireworks Display

When a fireworks rocket explodes, thousands of glowing fragments fly outward in all directions, and fall to Earth
in an elegant and beautiful display (Figure 9.31). Describe what happens, in terms of conservation of momentum
and center of mass.
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Figure 9.31 These exploding fireworks are a vivid example of conservation of momentum and
the motion of the center of mass.

The picture shows radial symmetry about the central points of the explosions; this suggests the idea of center of
mass. We can also see the parabolic motion of the glowing particles; this brings to mind projectile motion ideas.

Solution

Initially, the fireworks rocket is launched and flies more or less straight upward; this is the cause of the more-or-
less-straight, white trail going high into the sky below the explosion in the upper-right of the picture (the yellow
explosion). This trail is not parabolic because the explosive shell, during its launch phase, is actually a rocket; the
impulse applied to it by the ejection of the burning fuel applies a force on the shell during the rise-time interval.
(This is a phenomenon we will study in the next section.) The shell has multiple forces on it; thus, it is not in
free-fall prior to the explosion.

At the instant of the explosion, the thousands of glowing fragments fly outward in a radially symmetrical pattern.

The symmetry of the explosion is the result of all the internal forces summing to zero
⎛

⎝
⎜∑

j
f

→
j
int = 0

⎞

⎠
⎟; for every

internal force, there is another that is equal in magnitude and opposite in direction.

However, as we learned above, these internal forces cannot change the momentum of the center of mass of the
(now exploded) shell. Since the rocket force has now vanished, the center of mass of the shell is now a projectile
(the only force on it is gravity), so its trajectory does become parabolic. The two red explosions on the left show
the path of their centers of mass at a slightly longer time after explosion compared to the yellow explosion on the
upper right.

In fact, if you look carefully at all three explosions, you can see that the glowing trails are not truly radially
symmetric; rather, they are somewhat denser on one side than the other. Specifically, the yellow explosion and
the lower middle explosion are slightly denser on their right sides, and the upper-left explosion is denser on its
left side. This is because of the momentum of their centers of mass; the differing trail densities are due to the
momentum each piece of the shell had at the moment of its explosion. The fragment for the explosion on the
upper left of the picture had a momentum that pointed upward and to the left; the middle fragment’s momentum
pointed upward and slightly to the right; and the right-side explosion clearly upward and to the right (as evidenced
by the white rocket exhaust trail visible below the yellow explosion).

Finally, each fragment is a projectile on its own, thus tracing out thousands of glowing parabolas.
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9.13

Significance

In the discussion above, we said, “…the center of mass of the shell is now a projectile (the only force on it
is gravity)….” This is not quite accurate, for there may not be any mass at all at the center of mass; in which
case, there could not be a force acting on it. This is actually just verbal shorthand for describing the fact that the
gravitational forces on all the particles act so that the center of mass changes position exactly as if all the mass of
the shell were always located at the position of the center of mass.

Check Your Understanding How would the firework display change in deep space, far away from any
source of gravity?

You may sometimes hear someone describe an explosion by saying something like, “the fragments of the exploded object
always move in a way that makes sure that the center of mass continues to move on its original trajectory.” This makes it
sound as if the process is somewhat magical: how can it be that, in every explosion, it always works out that the fragments
move in just the right way so that the center of mass’ motion is unchanged? Phrased this way, it would be hard to believe
no explosion ever does anything differently.

The explanation of this apparently astonishing coincidence is: We defined the center of mass precisely so this is exactly
what we would get. Recall that first we defined the momentum of the system:

p→ CM = ∑
j = 1

N d p→ j
dt .

We then concluded that the net external force on the system (if any) changed this momentum:

F→ = d p→ CM
dt

and then—and here’s the point—we defined an acceleration that would obey Newton’s second law. That is, we demanded
that we should be able to write

a→ = F→
M

which requires that

a→ = d2

dt2
⎛

⎝
⎜ 1
M ∑

j = 1

N
m j r→ j

⎞

⎠
⎟.

where the quantity inside the parentheses is the center of mass of our system. So, it’s not astonishing that the center of mass
obeys Newton’s second law; we defined it so that it would.

9.7 | Rocket Propulsion

Learning Objectives

By the end of this section, you will be able to:

• Describe the application of conservation of momentum when the mass changes with time, as
well as the velocity

• Calculate the speed of a rocket in empty space, at some time, given initial conditions

• Calculate the speed of a rocket in Earth’s gravity field, at some time, given initial conditions

Now we deal with the case where the mass of an object is changing. We analyze the motion of a rocket, which changes its
velocity (and hence its momentum) by ejecting burned fuel gases, thus causing it to accelerate in the opposite direction of
the velocity of the ejected fuel (see Figure 9.32). Specifically: A fully fueled rocket ship in deep space has a total mass

m0 (this mass includes the initial mass of the fuel). At some moment in time, the rocket has a velocity v→ and mass m;
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this mass is a combination of the mass of the empty rocket and the mass of the remaining unburned fuel it contains. (We

refer to m as the “instantaneous mass” and v→ as the “instantaneous velocity.”) The rocket accelerates by burning the fuel

it carries and ejecting the burned exhaust gases. If the burn rate of the fuel is constant, and the velocity at which the exhaust
is ejected is also constant, what is the change of velocity of the rocket as a result of burning all of its fuel?

Figure 9.32 The space shuttle had a number of reusable parts.
Solid fuel boosters on either side were recovered and refueled
after each flight, and the entire orbiter returned to Earth for use
in subsequent flights. The large liquid fuel tank was expended.
The space shuttle was a complex assemblage of technologies,
employing both solid and liquid fuel, and pioneering ceramic
tiles as reentry heat shields. As a result, it permitted multiple
launches as opposed to single-use rockets. (credit: modification
of work by NASA)

Physical Analysis
Here’s a description of what happens, so that you get a feel for the physics involved.

• As the rocket engines operate, they are continuously ejecting burned fuel gases, which have both mass and velocity,
and therefore some momentum. By conservation of momentum, the rocket’s momentum changes by this same
amount (with the opposite sign). We will assume the burned fuel is being ejected at a constant rate, which means
the rate of change of the rocket’s momentum is also constant. By Equation 9.9, this represents a constant force on
the rocket.

• However, as time goes on, the mass of the rocket (which includes the mass of the remaining fuel) continuously
decreases. Thus, even though the force on the rocket is constant, the resulting acceleration is not; it is continuously
increasing.

• So, the total change of the rocket’s velocity will depend on the amount of mass of fuel that is burned, and that
dependence is not linear.

The problem has the mass and velocity of the rocket changing; also, the total mass of ejected gases is changing. If we define
our system to be the rocket + fuel, then this is a closed system (since the rocket is in deep space, there are no external forces
acting on this system); as a result, momentum is conserved for this system. Thus, we can apply conservation of momentum
to answer the question (Figure 9.33).
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Figure 9.33 The rocket accelerates to the right due to the
expulsion of some of its fuel mass to the left. Conservation of
momentum enables us to determine the resulting change of
velocity. The mass m is the instantaneous total mass of the rocket
(i.e., mass of rocket body plus mass of fuel at that point in time).
(credit: modification of work by NASA/Bill Ingalls)

At the same moment that the total instantaneous rocket mass is m (i.e., m is the mass of the rocket body plus the mass of the

fuel at that point in time), we define the rocket’s instantaneous velocity to be v→ = v i
^

(in the +x-direction); this velocity

is measured relative to an inertial reference system (the Earth, for example). Thus, the initial momentum of the system is

p→ i = mv i
^

.

The rocket’s engines are burning fuel at a constant rate and ejecting the exhaust gases in the −x-direction. During an

infinitesimal time interval dt, the engines eject a (positive) infinitesimal mass of gas dmg at velocity u→ = −u i
^

; note

that although the rocket velocity v i
^

is measured with respect to Earth, the exhaust gas velocity is measured with respect

to the (moving) rocket. Measured with respect to the Earth, therefore, the exhaust gas has velocity (v − u) i
^

.

As a consequence of the ejection of the fuel gas, the rocket’s mass decreases by dmg , and its velocity increases by dv i
^

.

Therefore, including both the change for the rocket and the change for the exhaust gas, the final momentum of the system is

p→ f = p→ rocket + p→ gas

= ⎛
⎝m − dmg

⎞
⎠(v + dv) i

^
+ dmg(v − u) i

^ .

Since all vectors are in the x-direction, we drop the vector notation. Applying conservation of momentum, we obtain

pi = pf
mv = ⎛

⎝m − dmg
⎞
⎠(v + dv) + dmg(v − u)

mv = mv + mdv − dmg v − dmgdv + dmg v − dmgu
mdv = dmgdv + dmg v.

Now, dmg and dv are each very small; thus, their product dmgdv is very, very small, much smaller than the other two

terms in this expression. We neglect this term, therefore, and obtain:

mdv = dmgu.

Our next step is to remember that, since dmg represents an increase in the mass of ejected gases, it must also represent a

decrease of mass of the rocket:

dmg = −dm.
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Replacing this, we have

mdv = −dmu

or

dv = −udmm .

Integrating from the initial mass mi to the final mass m of the rocket gives us the result we are after:

∫
vi

v
dv = −u∫

mi

m
1
mdm

v − vi = u ln⎛
⎝
mi
m

⎞
⎠

and thus our final answer is

(9.38)Δv = u ln⎛
⎝
mi
m

⎞
⎠.

This result is called the rocket equation. It was originally derived by the Soviet physicist Konstantin Tsiolkovsky in 1897.
It gives us the change of velocity that the rocket obtains from burning a mass of fuel that decreases the total rocket mass
from m0 down to m. As expected, the relationship between Δv and the change of mass of the rocket is nonlinear.

Problem-Solving Strategy: Rocket Propulsion

In rocket problems, the most common questions are finding the change of velocity due to burning some amount of fuel
for some amount of time; or to determine the acceleration that results from burning fuel.

1. To determine the change of velocity, use the rocket equation Equation 9.38.

2. To determine the acceleration, determine the force by using the impulse-momentum theorem, using the rocket
equation to determine the change of velocity.

Example 9.20

Thrust on a Spacecraft

A spacecraft is moving in gravity-free space along a straight path when its pilot decides to accelerate forward.

He turns on the thrusters, and burned fuel is ejected at a constant rate of 2.0 × 102 kg/s , at a speed (relative to

the rocket) of 2.5 × 102 m/s . The initial mass of the spacecraft and its unburned fuel is 2.0 × 104 kg , and the

thrusters are on for 30 s.

a. What is the thrust (the force applied to the rocket by the ejected fuel) on the spacecraft?

b. What is the spacecraft’s acceleration as a function of time?

c. What are the spacecraft’s accelerations at t = 0, 15, 30, and 35 s?

Strategy
a. The force on the spacecraft is equal to the rate of change of the momentum of the fuel.

b. Knowing the force from part (a), we can use Newton’s second law to calculate the consequent
acceleration. The key here is that, although the force applied to the spacecraft is constant (the fuel is being
ejected at a constant rate), the mass of the spacecraft isn’t; thus, the acceleration caused by the force won’t
be constant. We expect to get a function a(t), therefore.

c. We’ll use the function we obtain in part (b), and just substitute the numbers given. Important: We expect
that the acceleration will get larger as time goes on, since the mass being accelerated is continuously
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decreasing (fuel is being ejected from the rocket).

Solution
a. The momentum of the ejected fuel gas is

p = mg v.

The ejection velocity v = 2.5 × 102 m/s is constant, and therefore the force is

F = dp
dt = v

dmg
dt = −vdmdt .

Now,
dmg
dt is the rate of change of the mass of the fuel; the problem states that this is 2.0 × 102 kg/s .

Substituting, we get

F = v
dmg
dt

= ⎛
⎝2.5 × 102 m

s
⎞
⎠
⎛
⎝2.0 × 102 kg

s
⎞
⎠

= 5 × 104 N.
b. Above, we defined m to be the combined mass of the empty rocket plus however much unburned fuel it

contained: m = mR + mg . From Newton’s second law,

a = F
m = F

mR + mg
.

The force is constant and the empty rocket mass mR is constant, but the fuel mass mg is decreasing at a

uniform rate; specifically:

mg = mg(t) = mg0 − ⎛
⎝
dmg
dt

⎞
⎠t.

This gives us

a(t) = F
mgi − ⎛

⎝
dmg
dt

⎞
⎠t

= F
M − ⎛

⎝
dmg
dt

⎞
⎠t

.

Notice that, as expected, the acceleration is a function of time. Substituting the given numbers:

a(t) = 5 × 104 N
2.0 × 104 kg − ⎛

⎝2.0 × 102 kg
s

⎞
⎠t

.

c. At t = 0 s :

a(0 s) = 5 × 104 N
2.0 × 104 kg − ⎛

⎝2.0 × 102 kg
s

⎞
⎠(0 s)

= 2.5m
s2.

At t = 15 s, a(15 s) = 2.9 m/s2 .

At t = 30 s, a(30 s) = 3.6 m/s2 .

Acceleration is increasing, as we expected.

Significance

Notice that the acceleration is not constant; as a result, any dynamical quantities must be calculated either using
integrals, or (more easily) conservation of total energy.
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9.14
Check Your Understanding What is the physical difference (or relationship) between dm

dt and
dmg
dt

in this example?

Rocket in a Gravitational Field
Let’s now analyze the velocity change of the rocket during the launch phase, from the surface of Earth. To keep the math
manageable, we’ll restrict our attention to distances for which the acceleration caused by gravity can be treated as a constant
g.

The analysis is similar, except that now there is an external force of F→ = −mg j
^

acting on our system. This force applies

an impulse d J→ = F→ dt = −mgdt j
^

, which is equal to the change of momentum. This gives us

d p→ = d J→

p→ f − p→ i = −mgdt j
^

⎡
⎣
⎛
⎝m − dmg

⎞
⎠(v + dv) + dmg(v − u) − mv⎤

⎦ j
^

= −mgdt j
^

and so

mdv − dmgu = −mgdt

where we have again neglected the term dmgdv and dropped the vector notation. Next we replace dmg with −dm :

mdv + dmu = −mgdt
mdv = −dmu − mgdt.

Dividing through by m gives

dv = −udmm − gdt

and integrating, we have

(9.39)Δv = u ln⎛
⎝
mi
m

⎞
⎠ − gΔt.

Unsurprisingly, the rocket’s velocity is affected by the (constant) acceleration of gravity.

Remember that Δt is the burn time of the fuel. Now, in the absence of gravity, Equation 9.38 implies that it makes no

difference how much time it takes to burn the entire mass of fuel; the change of velocity does not depend on Δt . However,

in the presence of gravity, it matters a lot. The −g Δt term in Equation 9.39 tells us that the longer the burn time is, the

smaller the rocket’s change of velocity will be. This is the reason that the launch of a rocket is so spectacular at the first
moment of liftoff: It’s essential to burn the fuel as quickly as possible, to get as large a Δv as possible.
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center of mass

closed system

elastic

explosion

external force

impulse

impulse-momentum theorem

inelastic

internal force

Law of Conservation of Momentum

linear mass density

momentum

perfectly inelastic

rocket equation

system

CHAPTER 9 REVIEW

KEY TERMS
weighted average position of the mass

system for which the mass is constant and the net external force on the system is zero

collision that conserves kinetic energy

single object breaks up into multiple objects; kinetic energy is not conserved in explosions

force applied to an extended object that changes the momentum of the extended object as a whole

effect of applying a force on a system for a time interval; this time interval is usually small, but does not have to
be

change of momentum of a system is equal to the impulse applied to the system

collision that does not conserve kinetic energy

force that the simple particles that make up an extended object exert on each other. Internal forces can be
attractive or repulsive

total momentum of a closed system cannot change

λ , expressed as the number of kilograms of material per meter

measure of the quantity of motion that an object has; it takes into account both how fast the object is moving,
and its mass; specifically, it is the product of mass and velocity; it is a vector quantity

collision after which all objects are motionless, the final kinetic energy is zero, and the loss of kinetic
energy is a maximum

derived by the Soviet physicist Konstantin Tsiolkovsky in 1897, it gives us the change of velocity that
the rocket obtains from burning a mass of fuel that decreases the total rocket mass from mi down to m

object or collection of objects whose motion is currently under investigation; however, your system is defined at
the start of the problem, you must keep that definition for the entire problem

KEY EQUATIONS
Definition of momentum p→ = m v→

Impulse J→ ≡ ∫
ti

tf
F→ (t)dt or J→ = F→ ave Δt

Impulse-momentum theorem J→ = Δ p→

Average force from momentum F→ = Δ p→
Δt

Instantaneous force from momentum
(Newton’s second law)

F→ (t) = d p→
dt

Conservation of momentum
d p→ 1
dt + d p→ 2

dt = 0 or p→ 1 + p→ 2 = constant

Generalized conservation of momentum ∑
j = 1

N
p→ j = constant
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Conservation of momentum in two dimensions
pf, x = p1,i, x + p2,i, x
pf, y = p1,i, y + p2,i, y

External forces F→ ext = ∑
j = 1

N d p→ j
dt

Newton’s second law for an extended object F→ = d p→ CM
dt

Acceleration of the center of mass a→ CM = d2

dt2
⎛

⎝
⎜ 1
M ∑

j = 1

N
m j r→ j

⎞

⎠
⎟ = 1

M ∑
j = 1

N
m j a→ j

Position of the center of mass for a system
of particles

r→ CM ≡ 1
M ∑

j = 1

N
m j r→ j

Velocity of the center of mass v→ CM = d
dt

⎛

⎝
⎜ 1
M ∑

j = 1

N
m j r→ j

⎞

⎠
⎟ = 1

M ∑
j = 1

N
m j v→ j

Position of the center of mass of a
continuous object

r→ CM ≡ 1
M∫ r→ dm

Rocket equation Δv = u ln⎛
⎝
mi
m

⎞
⎠

SUMMARY

9.1 Linear Momentum

• The motion of an object depends on its mass as well as its velocity. Momentum is a concept that describes this. It is
a useful and powerful concept, both computationally and theoretically. The SI unit for momentum is kg · m/s.

9.2 Impulse and Collisions

• When a force is applied on an object for some amount of time, the object experiences an impulse.

• This impulse is equal to the object’s change of momentum.

• Newton’s second law in terms of momentum states that the net force applied to a system equals the rate of change
of the momentum that the force causes.

9.3 Conservation of Linear Momentum

• The law of conservation of momentum says that the momentum of a closed system is constant in time (conserved).

• A closed (or isolated) system is defined to be one for which the mass remains constant, and the net external force is
zero.

• The total momentum of a system is conserved only when the system is closed.

9.4 Types of Collisions

• An elastic collision is one that conserves kinetic energy.

• An inelastic collision does not conserve kinetic energy.

• Momentum is conserved regardless of whether or not kinetic energy is conserved.

• Analysis of kinetic energy changes and conservation of momentum together allow the final velocities to be
calculated in terms of initial velocities and masses in one-dimensional, two-body collisions.
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9.5 Collisions in Multiple Dimensions

• The approach to two-dimensional collisions is to choose a convenient coordinate system and break the motion into
components along perpendicular axes.

• Momentum is conserved in both directions simultaneously and independently.

• The Pythagorean theorem gives the magnitude of the momentum vector using the x- and y-components, calculated
using conservation of momentum in each direction.

9.6 Center of Mass

• An extended object (made up of many objects) has a defined position vector called the center of mass.

• The center of mass can be thought of, loosely, as the average location of the total mass of the object.

• The center of mass of an object traces out the trajectory dictated by Newton’s second law, due to the net external
force.

• The internal forces within an extended object cannot alter the momentum of the extended object as a whole.

9.7 Rocket Propulsion

• A rocket is an example of conservation of momentum where the mass of the system is not constant, since the rocket
ejects fuel to provide thrust.

• The rocket equation gives us the change of velocity that the rocket obtains from burning a mass of fuel that decreases
the total rocket mass.

CONCEPTUAL QUESTIONS

9.1 Linear Momentum

1. An object that has a small mass and an object that has a
large mass have the same momentum. Which object has the
largest kinetic energy?

2. An object that has a small mass and an object that has
a large mass have the same kinetic energy. Which mass has
the largest momentum?

9.2 Impulse and Collisions

3. Is it possible for a small force to produce a larger
impulse on a given object than a large force? Explain.

4. Why is a 10-m fall onto concrete far more dangerous
than a 10-m fall onto water?

5. What external force is responsible for changing the
momentum of a car moving along a horizontal road?

6. A piece of putty and a tennis ball with the same mass
are thrown against a wall with the same velocity. Which
object experience a greater impulse from the wall or are the
impulses equal? Explain.

9.3 Conservation of Linear Momentum

7. Under what circumstances is momentum conserved?

8. Can momentum be conserved for a system if there are
external forces acting on the system? If so, under what
conditions? If not, why not?

9. Explain in terms of momentum and Newton’s laws how
a car’s air resistance is due in part to the fact that it pushes
air in its direction of motion.

10. Can objects in a system have momentum while the
momentum of the system is zero? Explain your answer.

11. A sprinter accelerates out of the starting blocks. Can
you consider him as a closed system? Explain.

12. A rocket in deep space (zero gravity) accelerates by
firing hot gas out of its thrusters. Does the rocket constitute
a closed system? Explain.

9.4 Types of Collisions

13. Two objects of equal mass are moving with equal and
opposite velocities when they collide. Can all the kinetic
energy be lost in the collision?
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14. Describe a system for which momentum is conserved
but mechanical energy is not. Now the reverse: Describe
a system for which kinetic energy is conserved but
momentum is not.

9.5 Collisions in Multiple Dimensions

15. Momentum for a system can be conserved in one
direction while not being conserved in another. What is the
angle between the directions? Give an example.

9.6 Center of Mass

16. Suppose a fireworks shell explodes, breaking into

three large pieces for which air resistance is negligible.
How does the explosion affect the motion of the center of
mass? How would it be affected if the pieces experienced
significantly more air resistance than the intact shell?

9.7 Rocket Propulsion

17. It is possible for the velocity of a rocket to be greater
than the exhaust velocity of the gases it ejects. When that
is the case, the gas velocity and gas momentum are in the
same direction as that of the rocket. How is the rocket still
able to obtain thrust by ejecting the gases?

PROBLEMS

9.1 Linear Momentum

18. An elephant and a hunter are having a confrontation.

a. Calculate the momentum of the 2000.0-kg
elephant charging the hunter at a speed of 7.50 m/s.
b. Calculate the ratio of the elephant’s momentum
to the momentum of a 0.0400-kg tranquilizer dart
fired at a speed of 600 m/s.
c. What is the momentum of the 90.0-kg hunter
running at 7.40 m/s after missing the elephant?

19. A skater of mass 40 kg is carrying a box of mass 5 kg.
The skater has a speed of 5 m/s with respect to the floor and
is gliding without any friction on a smooth surface.

a. Find the momentum of the box with respect to
the floor.
b. Find the momentum of the box with respect
to the floor after she puts the box down on the
frictionless skating surface.

20. A car of mass 2000 kg is moving with a constant
velocity of 10 m/s due east. What is the momentum of the
car?

21. The mass of Earth is 5.97 × 1024 kg and its orbital

radius is an average of 1.50 × 1011 m . Calculate the

magnitude of its average linear momentum.

22. If a rainstorm drops 1 cm of rain over an area of 10
km2 in the period of 1 hour, what is the momentum of the
rain that falls in one second? Assume the terminal velocity
of a raindrop is 10 m/s.

23. What is the average momentum of an avalanche that
moves a 40-cm-thick layer of snow over an area of 100 m
by 500 m over a distance of 1 km down a hill in 5.5 s?
Assume a density of 350 kg/m3 for the snow.

24. What is the average momentum of a 70.0-kg sprinter
who runs the 100-m dash in 9.65 s?

9.2 Impulse and Collisions

25. A 75.0-kg person is riding in a car moving at 20.0 m/s
when the car runs into a bridge abutment (see the following
figure).
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a. Calculate the average force on the person if he
is stopped by a padded dashboard that compresses
an average of 1.00 cm.
b. Calculate the average force on the person if he
is stopped by an air bag that compresses an average
of 15.0 cm.

26. One hazard of space travel is debris left by previous
missions. There are several thousand objects orbiting Earth
that are large enough to be detected by radar, but there are
far greater numbers of very small objects, such as flakes
of paint. Calculate the force exerted by a 0.100-mg chip of
paint that strikes a spacecraft window at a relative speed of

4.00 × 103 m/s , given the collision lasts 6.00 × 10−8 s .

27. A cruise ship with a mass of 1.00 × 107 kg strikes a

pier at a speed of 0.750 m/s. It comes to rest after traveling
6.00 m, damaging the ship, the pier, and the tugboat
captain’s finances. Calculate the average force exerted on
the pier using the concept of impulse. (Hint: First calculate
the time it took to bring the ship to rest, assuming a constant
force.)

28. Calculate the final speed of a 110-kg rugby player
who is initially running at 8.00 m/s but collides head-on
with a padded goalpost and experiences a backward force

of 1.76 × 104 N for 5.50 × 10−2 s .

29. Water from a fire hose is directed horizontally against
a wall at a rate of 50.0 kg/s and a speed of 42.0 m/s.
Calculate the force exerted on the wall, assuming the
water’s horizontal momentum is reduced to zero.

30. A 0.450-kg hammer is moving horizontally at 7.00 m/
s when it strikes a nail and comes to rest after driving the
nail 1.00 cm into a board. Assume constant acceleration of
the hammer-nail pair.

a. Calculate the duration of the impact.
b. What was the average force exerted on the nail?

31. What is the momentum (as a function of time) of

a 5.0-kg particle moving with a velocity

v→ (t) = ⎛
⎝2.0 i

^
+ 4.0t j

^⎞
⎠ m/s ? What is the net force

acting on this particle?

32. The x-component of a force on a 46-g golf ball by a
7-iron versus time is plotted in the following figure:

a. Find the x-component of the impulse during the
intervals

i. [0, 50 ms], and
ii. [50 ms, 100 ms]

b. Find the change in the x-component of the
momentum during the intervals

iii. [0, 50 ms], and
iv. [50 ms, 100 ms]

33. A hockey puck of mass 150 g is sliding due east on
a frictionless table with a speed of 10 m/s. Suddenly, a
constant force of magnitude 5 N and direction due north
is applied to the puck for 1.5 s. Find the north and east
components of the momentum at the end of the 1.5-s
interval.

34. A ball of mass 250 g is thrown with an initial velocity
of 25 m/s at an angle of 30° with the horizontal direction.

Ignore air resistance. What is the momentum of the ball
after 0.2 s? (Do this problem by finding the components of
the momentum first, and then constructing the magnitude
and direction of the momentum vector from the
components.)

9.3 Conservation of Linear Momentum

35. Train cars are coupled together by being bumped into

Chapter 9 | Linear Momentum and Collisions 465



one another. Suppose two loaded train cars are moving
toward one another, the first having a mass of

1.50 × 105 kg and a velocity of (0.30 m/s) i
^

, and the

second having a mass of 1.10 × 105 kg and a velocity of

−(0.12 m/s) i
^

. What is their final velocity?

36. Two identical pucks collide elastically on an air
hockey table. Puck 1 was originally at rest; puck 2 has an
incoming speed of 6.00 m/s and scatters at an angle of 30°
with respect to its incoming direction. What is the velocity
(magnitude and direction) of puck 1 after the collision?

37. The figure below shows a bullet of mass 200 g
traveling horizontally towards the east with speed 400 m/s,
which strikes a block of mass 1.5 kg that is initially at rest
on a frictionless table.

After striking the block, the bullet is embedded in the block
and the block and the bullet move together as one unit.

a. What is the magnitude and direction of the
velocity of the block/bullet combination
immediately after the impact?
b. What is the magnitude and direction of the
impulse by the block on the bullet?
c. What is the magnitude and direction of the
impulse from the bullet on the block?
d. If it took 3 ms for the bullet to change the speed
from 400 m/s to the final speed after impact, what is
the average force between the block and the bullet
during this time?

38. A 20-kg child is coasting at 3.3 m/s over flat ground
in a 4.0-kg wagon. The child drops a 1.0-kg ball out the
back of the wagon. What is the final speed of the child and
wagon?

39. A 5000-kg paving truck coasts over a road at 2.5 m/s
and quickly dumps 1000 kg of gravel on the road. What is
the speed of the truck after dumping the gravel?

40. Explain why a cannon recoils when it fires a shell.

41. Two figure skaters are coasting in the same direction,
with the leading skater moving at 5.5 m/s and the trailing
skating moving at 6.2 m/s. When the trailing skater catches
up with the leading skater, he picks her up without applying
any horizontal forces on his skates. If the trailing skater is
50% heavier than the 50-kg leading skater, what is their
speed after he picks her up?

42. A 2000-kg railway freight car coasts at 4.4 m/s
underneath a grain terminal, which dumps grain directly
down into the freight car. If the speed of the loaded freight
car must not go below 3.0 m/s, what is the maximum mass
of grain that it can accept?

9.4 Types of Collisions

43. A 5.50-kg bowling ball moving at 9.00 m/s collides
with a 0.850-kg bowling pin, which is scattered at an angle
to the initial direction of the bowling ball and with a speed
of 15.0 m/s.

a. Calculate the final velocity (magnitude and
direction) of the bowling ball.
b. Is the collision elastic?

44. Ernest Rutherford (the first New Zealander to be
awarded the Nobel Prize in Chemistry) demonstrated that
nuclei were very small and dense by scattering helium-4
nuclei from gold-197 nuclei. The energy of the incoming

helium nucleus was 8.00 × 10−13 J , and the masses of

the helium and gold nuclei were 6.68 × 10−27 kg and

3.29 × 10−25 kg , respectively (note that their mass ratio

is 4 to 197).

466 Chapter 9 | Linear Momentum and Collisions

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



a. If a helium nucleus scatters to an angle of 120° during

an elastic collision with a gold nucleus, calculate the helium
nucleus’s final speed and the final velocity (magnitude and
direction) of the gold nucleus.

b. What is the final kinetic energy of the helium nucleus?

45. A 90.0-kg ice hockey player hits a 0.150-kg puck,
giving the puck a velocity of 45.0 m/s. If both are initially
at rest and if the ice is frictionless, how far does the player
recoil in the time it takes the puck to reach the goal 15.0 m
away?

46. A 100-g firecracker is launched vertically into the air
and explodes into two pieces at the peak of its trajectory. If
a 72-g piece is projected horizontally to the left at 20 m/s,
what is the speed and direction of the other piece?

47. In an elastic collision, a 400-kg bumper car collides
directly from behind with a second, identical bumper car
that is traveling in the same direction. The initial speed of
the leading bumper car is 5.60 m/s and that of the trailing
car is 6.00 m/s. Assuming that the mass of the drivers is
much, much less than that of the bumper cars, what are their
final speeds?

48. Repeat the preceding problem if the mass of the
leading bumper car is 30.0% greater than that of the trailing
bumper car.

49. An alpha particle (4He) undergoes an elastic collision
with a stationary uranium nucleus (235U). What percent
of the kinetic energy of the alpha particle is transferred
to the uranium nucleus? Assume the collision is one-
dimensional.

50. You are standing on a very slippery icy surface and
throw a 1-kg football horizontally at a speed of 6.7 m/
s. What is your velocity when you release the football?
Assume your mass is 65 kg.

51. A 35-kg child sleds down a hill and then coasts along
the flat section at the bottom, where a second 35-kg child
jumps on the sled as it passes by her. If the speed of the
sled is 3.5 m/s before the second child jumps on, what is its
speed after she jumps on?

52. A boy sleds down a hill and onto a frictionless ice-
covered lake at 10.0 m/s. In the middle of the lake is a

1000-kg boulder. When the sled crashes into the boulder, he
is propelled over the boulder and continues sliding over the
ice. If the boy’s mass is 40.0 kg and the sled’s mass is 2.50
kg, what is the speed of the sled and the boulder after the
collision?

9.5 Collisions in Multiple Dimensions

53. A 1.80-kg falcon is diving at 28.0 m/s at a downward
angle of 35° . It catches a 0.650-kg dove from behind in

midair. What is their combined velocity after impact if the
dove’s initial velocity was 7.00 m/s directed horizontally?

Note that v̂ 1,i is a unit vector pointing in the direction in

which the hawk is initially flying.

Figure 9.34 (credit “hawk”: modification of work by
“USFWS Mountain-Prairie”/Flickr; credit “dove”: modification
of work by Jacob Spinks)

54. A billiard ball, labeled 1, moving horizontally strikes
another billiard ball, labeled 2, at rest. Before impact, ball
1 was moving at a speed of 3.00 m/s, and after impact it is
moving at 0.50 m/s at 50° from the original direction. If the
two balls have equal masses of 300 g, what is the velocity
of the ball 2 after the impact?

55. A projectile of mass 2.0 kg is fired in the air at an
angle of 40.0 ° to the horizon at a speed of 50.0 m/s. At

the highest point in its flight, the projectile breaks into three
parts of mass 1.0 kg, 0.7 kg, and 0.3 kg. The 1.0-kg part
falls straight down after breakup with an initial speed of
10.0 m/s, the 0.7-kg part moves in the original forward
direction, and the 0.3-kg part goes straight up.
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a. Find the speeds of the 0.3-kg and 0.7-kg pieces
immediately after the break-up.
b. How high from the break-up point does the
0.3-kg piece go before coming to rest?
c. Where does the 0.7-kg piece land relative to
where it was fired from?

56. Two asteroids collide and stick together. The first

asteroid has mass of 15 × 103 kg and is initially moving

at 770 m/s. The second asteroid has mass of 20 × 103 kg
and is moving at 1020 m/s. Their initial velocities made an
angle of 20° with respect to each other. What is the final
speed and direction with respect to the velocity of the first
asteroid?

57. A 200-kg rocket in deep space moves with a velocity

of (121 m/s) i
^

+ (38.0 m/s) j
^

. Suddenly, it explodes into

three pieces, with the first (78 kg) moving at

−(321 m/s) i
^

+ (228 m/s) j
^

and the second (56 kg)

moving at (16.0 m/s) i
^

− (88.0 m/s) j
^

. Find the velocity

of the third piece.

58. A proton traveling at 3.0 × 106 m/s scatters

elastically from an initially stationary alpha particle and
is deflected at an angle of 85° with respect to its initial
velocity. Given that the alpha particle has four times the
mass of the proton, what percent of its initial kinetic energy
does the proton retain after the collision?

59. Three 70-kg deer are standing on a flat 200-kg rock
that is on an ice-covered pond. A gunshot goes off and
the dear scatter, with deer A running at

(15 m/s) i
^

+ (5.0 m/s) j
^

, deer B running at

(−12 m/s) i
^

+ (8.0 m/s) j
^

, and deer C running at

(1.2 m/s) i
^

− (18.0 m/s) j
^

. What is the velocity of the

rock on which they were standing?

60. A family is skating. The father (75 kg) skates at 8.2
m/s and collides and sticks to the mother (50 kg), who was
initially moving at 3.3 m/s and at 45° with respect to the
father’s velocity. The pair then collides with their daughter
(30 kg), who was stationary, and the three slide off together.
What is their final velocity?

61. An oxygen atom (mass 16 u) moving at 733 m/s at

15.0° with respect to the i
^

direction collides and sticks

to an oxygen molecule (mass 32 u) moving at 528 m/s

at 128° with respect to the i
^

direction. The two stick

together to form ozone. What is the final velocity of the
ozone molecule?

62. Two cars approach an extremely icy four-way
perpendicular intersection. Car A travels northward at 30
m/s and car B is travelling eastward. They collide and stick
together, traveling at 28° north of east. What was the initial
velocity of car B?

9.6 Center of Mass

63. Three point masses are placed at the corners of a
triangle as shown in the figure below.

Find the center of mass of the three-mass system.

64. Two particles of masses m1 and m2 separated by a

horizontal distance D are released from the same height h
at the same time. Find the vertical position of the center of
mass of these two particles at a time before the two particles
strike the ground. Assume no air resistance.

65. Two particles of masses m1 and m2 separated by a

horizontal distance D are let go from the same height h at
different times. Particle 1 starts at t = 0 , and particle 2 is

let go at t = T . Find the vertical position of the center of

mass at a time before the first particle strikes the ground.
Assume no air resistance.

66. Two particles of masses m1 and m2 move uniformly

in different circles of radii R1 and R2 about origin in the

x, y-plane. The x- and y-coordinates of the center of mass
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and that of particle 1 are given as follows (where length is
in meters and t in seconds):
x1(t) = 4cos(2t), y1(t) = 4sin(2t)

and:
xCM(t) = 3cos(2t), yCM(t) = 3sin(2t).

a. Find the radius of the circle in which particle 1
moves.
b. Find the x- and y-coordinates of particle 2 and
the radius of the circle this particle moves.

67. Two particles of masses m1 and m2 move uniformly

in different circles of radii R1 and R2 about the origin

in the x, y-plane. The coordinates of the two particles in
meters are given as follows ( z = 0 for both). Here t is in

seconds:
x1(t) = 4 cos(2t)

y1(t) = 4 sin(2t)

x2(t) = 2 cos⎛
⎝3t − π

2
⎞
⎠

y2(t) = 2 sin⎛
⎝3t − π

2
⎞
⎠

a. Find the radii of the circles of motion of both
particles.
b. Find the x- and y-coordinates of the center of
mass.
c. Decide if the center of mass moves in a circle
by plotting its trajectory.

68. Find the center of mass of a one-meter long rod, made

of 50 cm of iron (density 8 g
cm3 ) and 50 cm of aluminum

(density 2.7 g
cm3 ).

69. Find the center of mass of a rod of length L whose
mass density changes from one end to the other
quadratically. That is, if the rod is laid out along the x-axis
with one end at the origin and the other end at x = L ,

the density is given by ρ(x) = ρ0 + (ρ1 − ρ0)⎛
⎝
x
L

⎞
⎠
2

, where

ρ0 and ρ1 are constant values.

70. Find the center of mass of a rectangular block of
length a and width b that has a nonuniform density such
that when the rectangle is placed in the x,y-plane with
one corner at the origin and the block placed in the first
quadrant with the two edges along the x- and y-axes, the
density is given by ρ(x, y) = ρ0 x , where ρ0 is a

constant.

71. Find the center of mass of a rectangular material of
length a and width b made up of a material of nonuniform

density. The density is such that when the rectangle is
placed in the xy-plane, the density is given by
ρ(x, y) = ρ0 xy .

72. A cube of side a is cut out of another cube of side b as
shown in the figure below.

Find the location of the center of mass of the structure.
(Hint: Think of the missing part as a negative mass
overlapping a positive mass.)

73. Find the center of mass of cone of uniform density that
has a radius R at the base, height h, and mass M. Let the
origin be at the center of the base of the cone and have +z
going through the cone vertex.

74. Find the center of mass of a thin wire of mass m and
length L bent in a semicircular shape. Let the origin be at
the center of the semicircle and have the wire arc from the
+x axis, cross the +y axis, and terminate at the −x axis.

75. Find the center of mass of a uniform thin semicircular
plate of radius R. Let the origin be at the center of the
semicircle, the plate arc from the +x axis to the −x axis, and
the z axis be perpendicular to the plate.

76. Find the center of mass of a sphere of mass M and
radius R and a cylinder of mass m, radius r, and height h
arranged as shown below.

Express your answers in a coordinate system that has the
origin at the center of the cylinder.
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9.7 Rocket Propulsion

77. (a) A 5.00-kg squid initially at rest ejects 0.250 kg of
fluid with a velocity of 10.0 m/s. What is the recoil velocity
of the squid if the ejection is done in 0.100 s and there is a
5.00-N frictional force opposing the squid’s movement?

(b) How much energy is lost to work done against friction?

78. A rocket takes off from Earth and reaches a speed of
100 m/s in 10.0 s. If the exhaust speed is 1500 m/s and the
mass of fuel burned is 100 kg, what was the initial mass of
the rocket?

79. Repeat the preceding problem but for a rocket that
takes off from a space station, where there is no gravity
other than the negligible gravity due to the space station.

80. How much fuel would be needed for a 1000-kg rocket
(this is its mass with no fuel) to take off from Earth and
reach 1000 m/s in 30 s? The exhaust speed is 1000 m/s.

81. What exhaust speed is required to accelerate a rocket
in deep space from 800 m/s to 1000 m/s in 5.0 s if the total
rocket mass is 1200 kg and the rocket only has 50 kg of fuel
left?

82. Unreasonable Results Squids have been reported to
jump from the ocean and travel 30.0 m (measured
horizontally) before re-entering the water.

(a) Calculate the initial speed of the squid if it leaves the
water at an angle of 20.0°, assuming negligible lift from the
air and negligible air resistance.

(b) The squid propels itself by squirting water. What
fraction of its mass would it have to eject in order to
achieve the speed found in the previous part? The water
is ejected at 12.0 m/s; gravitational force and friction are
neglected.

(c) What is unreasonable about the results?

(d) Which premise is unreasonable, or which premises are
inconsistent?

ADDITIONAL PROBLEMS

83. Two 70-kg canoers paddle in a single, 50-kg canoe.
Their paddling moves the canoe at 1.2 m/s with respect
to the water, and the river they’re in flows at 4 m/s with
respect to the land. What is their momentum with respect to
the land?

84. Which has a larger magnitude of momentum: a
3000-kg elephant moving at 40 km/h or a 60-kg cheetah
moving at 112 km/h?

85. A driver applies the brakes and reduces the speed of
her car by 20%, without changing the direction in which
the car is moving. By how much does the car’s momentum
change?

86. You friend claims that momentum is mass multiplied
by velocity, so things with more mass have more
momentum. Do you agree? Explain.

87. Dropping a glass on a cement floor is more likely to
break the glass than if it is dropped from the same height on
a grass lawn. Explain in terms of the impulse.

88. Your 1500-kg sports car accelerates from 0 to 30 m/
s in 10 s. What average force is exerted on it during this
acceleration?

89. A ball of mass m is dropped. What is the formula for

the impulse exerted on the ball from the instant it is dropped
to an arbitrary time τ later? Ignore air resistance.

90. Repeat the preceding problem, but including a drag

force due to air of fdrag = −b v→ .

91. A 5.0-g egg falls from a 90-cm-high counter onto the
floor and breaks. What impulse is exerted by the floor on
the egg?

92. A car crashes into a large tree that does not move. The
car goes from 30 m/s to 0 in 1.3 m. (a) What impulse is
applied to the driver by the seatbelt, assuming he follows
the same motion as the car? (b) What is the average force
applied to the driver by the seatbelt?

93. Two hockey players approach each other head on,
each traveling at the same speed vi . They collide and get

tangled together, falling down and moving off at a speed
vi/5 . What is the ratio of their masses?

94. You are coasting on your 10-kg bicycle at 15 m/s and
a 5.0-g bug splatters on your helmet. The bug was initially
moving at 2.0 m/s in the same direction as you. If your mass
is 60 kg, (a) what is the initial momentum of you plus your
bicycle? (b) What is the initial momentum of the bug? (c)
What is your change in velocity due to the collision with
the bug? (d) What would the change in velocity have been
if the bug were traveling in the opposite direction?

95. A load of gravel is dumped straight down into a 30
000-kg freight car coasting at 2.2 m/s on a straight section
of a railroad. If the freight car’s speed after receiving the
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gravel is 1.5 m/s, what mass of gravel did it receive?

96. Two carts on a straight track collide head on. The first
cart was moving at 3.6 m/s in the positive x direction and
the second was moving at 2.4 m/s in the opposite direction.
After the collision, the second car continues moving in its
initial direction of motion at 0.24 m/s. If the mass of the
second car is 5.0 times that of the first, what is the mass and
final velocity of the first car?

97. A 100-kg astronaut finds himself separated from his
spaceship by 10 m and moving away from the spaceship at
0.1 m/s. To get back to the spaceship, he throws a 10-kg
tool bag away from the spaceship at 5.0 m/s. How long will
he take to return to the spaceship?

98. Derive the equations giving the final speeds for two
objects that collide elastically, with the mass of the objects
being m1 and m2 and the initial speeds being v1,i and

v2,i = 0 (i.e., second object is initially stationary).

99. Repeat the preceding problem for the case when the
initial speed of the second object is nonzero.

100. A child sleds down a hill and collides at 5.6 m/s into a
stationary sled that is identical to his. The child is launched
forward at the same speed, leaving behind the two sleds that
lock together and slide forward more slowly. What is the
speed of the two sleds after this collision?

101. For the preceding problem, find the final speed of
each sled for the case of an elastic collision.

102. A 90-kg football player jumps vertically into the
air to catch a 0.50-kg football that is thrown essentially
horizontally at him at 17 m/s. What is his horizontal speed
after catching the ball?

103. Three skydivers are plummeting earthward. They are
initially holding onto each other, but then push apart. Two
skydivers of mass 70 and 80 kg gain horizontal velocities
of 1.2 m/s north and 1.4 m/s southeast, respectively. What
is the horizontal velocity of the third skydiver, whose mass
is 55 kg?

104. Two billiard balls are at rest and touching each other
on a pool table. The cue ball travels at 3.8 m/s along the
line of symmetry between these balls and strikes them
simultaneously. If the collision is elastic, what is the
velocity of the three balls after the collision?

105. A billiard ball traveling at (2.2 m/s) i
^

− (0.4 m/s) j
^

collides with a wall that is aligned in the j
^

direction.

Assuming the collision is elastic, what is the final velocity
of the ball?

106. Two identical billiard balls collide. The first one

is initially traveling at (2.2 m/s) i
^

− (0.4 m/s) j
^

and the

second one at −(1.4 m/s) i
^

+ (2.4 m/s) j
^

. Suppose they

collide when the center of ball 1 is at the origin and the
center of ball 2 is at the point (2R, 0) where R is the radius

of the balls. What is the final velocity of each ball?

107. Repeat the preceding problem if the balls collide
when the center of ball 1 is at the origin and the center of
ball 2 is at the point (0, 2R) .

108. Repeat the preceding problem if the balls collide
when the center of ball 1 is at the origin and the center of
ball 2 is at the point ⎛

⎝ 3R/2, R/2⎞
⎠

109. Where is the center of mass of a semicircular wire of
radius R that is centered on the origin, begins and ends on
the x axis, and lies in the x,y plane?

110. Where is the center of mass of a slice of pizza that
was cut into eight equal slices? Assume the origin is at the
apex of the slice and measure angles with respect to an edge
of the slice. The radius of the pizza is R.

111. If the entire population of Earth were transferred to
the Moon, how far would the center of mass of the Earth-
Moon-population system move? Assume the population is
7 billion, the average human has a mass of 65 kg, and
that the population is evenly distributed over both the Earth

and the Moon. The mass of the Earth is 5.97 × 1024 kg

and that of the Moon is 7.34 × 1022 kg . The radius of the

Moon’s orbit is about 3.84 × 105 m .

112. You friend wonders how a rocket continues to climb
into the sky once it is sufficiently high above the surface
of Earth so that its expelled gasses no longer push on the
surface. How do you respond?

113. To increase the acceleration of a rocket, should you
throw rocks out of the front window of the rocket or out of
the back window?
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CHALLENGE PROBLEMS

114. A 65-kg person jumps from the first floor window
of a burning building and lands almost vertically on the
ground with a horizontal velocity of 3 m/s and vertical
velocity of −9 m/s . Upon impact with the ground he is

brought to rest in a short time. The force experienced by his
feet depends on whether he keeps his knees stiff or bends
them. Find the force on his feet in each case.

a. First find the impulse on the person from the
impact on the ground. Calculate both its magnitude
and direction.
b. Find the average force on the feet if the person
keeps his leg stiff and straight and his center of
mass drops by only 1 cm vertically and 1 cm
horizontally during the impact.
c. Find the average force on the feet if the person
bends his legs throughout the impact so that his
center of mass drops by 50 cm vertically and 5 cm
horizontally during the impact.
d. Compare the results of part (b) and (c), and
draw conclusions about which way is better.

You will need to find the time the impact lasts by making
reasonable assumptions about the deceleration. Although
the force is not constant during the impact, working with
constant average force for this problem is acceptable.

115. Two projectiles of mass m1 and m2 are fired at the

same speed but in opposite directions from two launch sites
separated by a distance D. They both reach the same spot in
their highest point and strike there. As a result of the impact
they stick together and move as a single body afterwards.
Find the place they will land.

116. Two identical objects (such as billiard balls) have
a one-dimensional collision in which one is initially
motionless. After the collision, the moving object is
stationary and the other moves with the same speed as the
other originally had. Show that both momentum and kinetic
energy are conserved.

117. A ramp of mass M is at rest on a horizontal surface.
A small cart of mass m is placed at the top of the ramp and
released.

What are the velocities of the ramp and the cart relative to
the ground at the instant the cart leaves the ramp?

118. Find the center of mass of the structure given in the
figure below. Assume a uniform thickness of 20 cm, and a

uniform density of 1 g/cm3.
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7 WORK, ENERGY, AND ENERGY
RESOURCES

Figure 7.1 How many forms of energy can you identify in this photograph of a wind farm in Iowa? (credit: Jürgen from Sandesneben, Germany,
Wikimedia Commons)

Chapter Outline
7.1. Work: The Scientific Definition

7.2. Kinetic Energy and the Work-Energy Theorem

7.3. Gravitational Potential Energy

7.4. Conservative Forces and Potential Energy

7.5. Nonconservative Forces

7.6. Conservation of Energy

7.7. Power

7.8. Work, Energy, and Power in Humans

7.9. World Energy Use

Connection for AP® Courses
Energy plays an essential role both in everyday events and in scientific phenomena. You can no doubt name many forms of
energy, from that provided by our foods to the energy we use to run our cars and the sunlight that warms us on the beach. You
can also cite examples of what people call “energy” that may not be scientific, such as someone having an energetic personality.
Not only does energy have many interesting forms, it is involved in almost all phenomena, and is one of the most important
concepts of physics.

There is no simple and accurate scientific definition for energy. Energy is characterized by its many forms and the fact that it is
conserved. We can loosely define energy as the ability to do work, admitting that in some circumstances not all energy is
available to do work. Because of the association of energy with work, we begin the chapter with a discussion of work. Work is
intimately related to energy and how energy moves from one system to another or changes form. The work-energy theorem
supports Big Idea 3, that interactions between objects are described by forces. In particular, exerting a force on an object may do
work on it, changing it's energy (Enduring Understanding 3.E). The work-energy theorem, introduced in this chapter, establishes
the relationship between work done on an object by an external force and changes in the object’s kinetic energy (Essential
Knowledge 3.E.1).

Similarly, systems can do work on each other, supporting Big Idea 4, that interactions between systems can result in changes in
those systems—in this case, changes in the total energy of the system (Enduring Understanding 4.C). The total energy of the
system is the sum of its kinetic energy, potential energy, and microscopic internal energy (Essential Knowledge 4.C.1). In this
chapter students learn how to calculate kinetic, gravitational, and elastic potential energy in order to determine the total
mechanical energy of a system. The transfer of mechanical energy into or out of a system is equal to the work done on the
system by an external force with a nonzero component parallel to the displacement (Essential Knowledge 4.C.2).

An important aspect of energy is that the total amount of energy in the universe is constant. Energy can change forms, but it
cannot appear from nothing or disappear without a trace. Energy is thus one of a handful of physical quantities that we say is
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“conserved.” Conservation of energy (as physicists call the principle that energy can neither be created nor destroyed) is based
on experiment. Even as scientists discovered new forms of energy, conservation of energy has always been found to apply.
Perhaps the most dramatic example of this was supplied by Einstein when he suggested that mass is equivalent to energy (his
famous equation E = mc2). This is one of the most important applications of Big Idea 5, that changes that occur as a result of
interactions are constrained by conservation laws. Specifically, there are many situations where conservation of energy
(Enduring Understanding 5.B) is both a useful concept and starting point for calculations related to the system. Note, however,
that conservation doesn’t necessarily mean that energy in a system doesn’t change. Energy may be transferred into or out of the
system, and the change must be equal to the amount transferred (Enduring Understanding 5.A). This may occur if there is an
external force or a transfer between external objects and the system (Essential Knowledge 5.A.3). Energy is one of the
fundamental quantities that are conserved for all systems (Essential Knowledge 5.A.2). The chapter introduces concepts of
kinetic energy and potential energy. Kinetic energy is introduced as an energy of motion that can be changed by the amount of
work done by an external force. Potential energy can only exist when objects interact with each other via conservative forces
according to classical physics (Essential Knowledge 5.B.3). Because of this, a single object can only have kinetic energy and no
potential energy (Essential Knowledge 5.B.1). The chapter also introduces the idea that the energy transfer is equal to the work
done on the system by external forces and the rate of energy transfer is defined as power (Essential Knowledge 5.B.5).

From a societal viewpoint, energy is one of the major building blocks of modern civilization. Energy resources are key limiting
factors to economic growth. The world use of energy resources, especially oil, continues to grow, with ominous consequences
economically, socially, politically, and environmentally. We will briefly examine the world’s energy use patterns at the end of this
chapter.

The concepts in this chapter support:

Big Idea 3 The interactions of an object with other objects can be described by forces.

Enduring Understanding 3.E A force exerted on an object can change the kinetic energy of the object.

Essential Knowledge 3.E.1 The change in the kinetic energy of an object depends on the force exerted on the object and on the
displacement of the object during the interval that the force is exerted.

Big Idea 4 Interactions between systems can result in changes in those systems.

Enduring Understanding 4.C Interactions with other objects or systems can change the total energy of a system.

Essential Knowledge 4.C.1 The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy.
Examples should include gravitational potential energy, elastic potential energy, and kinetic energy.

Essential Knowledge 4.C.2 Mechanical energy (the sum of kinetic and potential energy) is transferred into or out of a system
when an external force is exerted on a system such that a component of the force is parallel to its displacement. The process
through which the energy is transferred is called work.

Big Idea 5 Changes that occur as a result of interactions are constrained by conservation laws.

Enduring Understanding 5.A Certain quantities are conserved, in the sense that the changes of those quantities in a given
system are always equal to the transfer of that quantity to or from the system by all possible interactions with other systems.

Essential Knowledge 5.A.2 For all systems under all circumstances, energy, charge, linear momentum, and angular momentum
are conserved.

Essential Knowledge 5.A.3 An interaction can be either a force exerted by objects outside the system or the transfer of some
quantity with objects outside the system.

Enduring Understanding 5.B The energy of a system is conserved.

Essential Knowledge 5.B.1 Classically, an object can only have kinetic energy since potential energy requires an interaction
between two or more objects.

Essential Knowledge 5.B.3 A system with internal structure can have potential energy. Potential energy exists within a system if
the objects within that system interact with conservative forces.

Essential Knowledge 5.B.5 Energy can be transferred by an external force exerted on an object or system that moves the object
or system through a distance; this energy transfer is called work. Energy transfer in mechanical or electrical systems may occur
at different rates. Power is defined as the rate of energy transfer into, out of, or within a system.

7.1 Work: The Scientific Definition

Learning Objectives
By the end of this section, you will be able to:

• Explain how an object must be displaced for a force on it to do work.
• Explain how relative directions of force and displacement of an object determine whether the work done on the object is

positive, negative, or zero.

The information presented in this section supports the following AP® learning objectives and science practices:

• 5.B.5.1 The student is able to design an experiment and analyze data to examine how a force exerted on an object or
system does work on the object or system as it moves through a distance. (S.P. 4.2, 5.1)
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• 5.B.5.2 The student is able to design an experiment and analyze graphical data in which interpretations of the area
under a force-distance curve are needed to determine the work done on or by the object or system. (S.P. 4.5, 5.1)

• 5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an
object or system from information about a force exerted on the object or system through a distance. (S.P. 1.5, 2.2, 6.4)

What It Means to Do Work
The scientific definition of work differs in some ways from its everyday meaning. Certain things we think of as hard work, such as
writing an exam or carrying a heavy load on level ground, are not work as defined by a scientist. The scientific definition of work
reveals its relationship to energy—whenever work is done, energy is transferred.

For work, in the scientific sense, to be done on an object, a force must be exerted on that object and there must be displacement
of that object in the direction of the force.

Formally, the work done on a system by a constant force is defined to be the product of the component of the force in the
direction of motion and the distance through which the force acts. For a constant force, this is expressed in equation form as

(7.1)W = ∣ F ∣ (cos θ) ∣ d ∣ ,

where W is work, d is the displacement of the system, and θ is the angle between the force vector F and the displacement

vector d , as in Figure 7.2. We can also write this as

(7.2)W = Fd cos θ.
To find the work done on a system that undergoes motion that is not one-way or that is in two or three dimensions, we divide the
motion into one-way one-dimensional segments and add up the work done over each segment.

What is Work?

The work done on a system by a constant force is the product of the component of the force in the direction of motion times
the distance through which the force acts. For one-way motion in one dimension, this is expressed in equation form as

(7.3)W = Fd cos θ,

where W is work, F is the magnitude of the force on the system, d is the magnitude of the displacement of the system,

and θ is the angle between the force vector F and the displacement vector d .
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Figure 7.2 Examples of work. (a) The work done by the force F on this lawn mower is Fd cos θ . Note that F cos θ is the component of the
force in the direction of motion. (b) A person holding a briefcase does no work on it, because there is no displacement. No energy is transferred to or
from the briefcase. (c) The person moving the briefcase horizontally at a constant speed does no work on it, and transfers no energy to it. (d) Work is

done on the briefcase by carrying it up stairs at constant speed, because there is necessarily a component of force F in the direction of the motion.
Energy is transferred to the briefcase and could in turn be used to do work. (e) When the briefcase is lowered, energy is transferred out of the briefcase
and into an electric generator. Here the work done on the briefcase by the generator is negative, removing energy from the briefcase, because F and

d are in opposite directions.

To examine what the definition of work means, let us consider the other situations shown in Figure 7.2. The person holding the
briefcase in Figure 7.2(b) does no work, for example. Here d = 0 , so W = 0 . Why is it you get tired just holding a load? The
answer is that your muscles are doing work against one another, but they are doing no work on the system of interest (the
“briefcase-Earth system”—see Gravitational Potential Energy for more details). There must be displacement for work to be
done, and there must be a component of the force in the direction of the motion. For example, the person carrying the briefcase
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on level ground in Figure 7.2(c) does no work on it, because the force is perpendicular to the motion. That is, cos 90º = 0 , and

so W = 0 .

In contrast, when a force exerted on the system has a component in the direction of motion, such as in Figure 7.2(d), work is
done—energy is transferred to the briefcase. Finally, in Figure 7.2(e), energy is transferred from the briefcase to a generator.
There are two good ways to interpret this energy transfer. One interpretation is that the briefcase’s weight does work on the
generator, giving it energy. The other interpretation is that the generator does negative work on the briefcase, thus removing
energy from it. The drawing shows the latter, with the force from the generator upward on the briefcase, and the displacement
downward. This makes θ = 180º , and cos 180º = –1 ; therefore, W is negative.

Real World Connections: When Work Happens

Note that work as we define it is not the same as effort. You can push against a concrete wall all you want, but you won’t
move it. While the pushing represents effort on your part, the fact that you have not changed the wall’s state in any way
indicates that you haven’t done work. If you did somehow push the wall over, this would indicate a change in the wall’s state,
and therefore you would have done work.

This can also be shown with Figure 7.2(a): as you push a lawnmower against friction, both you and friction are changing the
lawnmower’s state. However, only the component of the force parallel to the movement is changing the lawnmower’s state.
The component perpendicular to the motion is trying to push the lawnmower straight into Earth; the lawnmower does not
move into Earth, and therefore the lawnmower’s state is not changing in the direction of Earth.

Similarly, in Figure 7.2(c), both your hand and gravity are exerting force on the briefcase. However, they are both acting
perpendicular to the direction of motion, hence they are not changing the condition of the briefcase and do no work.
However, if the briefcase were dropped, then its displacement would be parallel to the force of gravity, which would do work
on it, changing its state (it would fall to the ground).

Calculating Work
Work and energy have the same units. From the definition of work, we see that those units are force times distance. Thus, in SI
units, work and energy are measured in newton-meters. A newton-meter is given the special name joule (J), and

1 J = 1 N ⋅ m = 1 kg ⋅ m2/s2 . One joule is not a large amount of energy; it would lift a small 100-gram apple a distance of

about 1 meter.

Example 7.1 Calculating the Work You Do to Push a Lawn Mower Across a Large Lawn

How much work is done on the lawn mower by the person in Figure 7.2(a) if he exerts a constant force of 75.0 N at an

angle 35º below the horizontal and pushes the mower 25.0 m on level ground? Convert the amount of work from joules to

kilocalories and compare it with this person’s average daily intake of 10,000 kJ (about 2400 kcal ) of food energy. One

calorie (1 cal) of heat is the amount required to warm 1 g of water by 1ºC , and is equivalent to 4.184 J , while one food

calorie (1 kcal) is equivalent to 4184 J .

Strategy

We can solve this problem by substituting the given values into the definition of work done on a system, stated in the
equation W = Fd cos θ . The force, angle, and displacement are given, so that only the work W is unknown.

Solution

The equation for the work is

(7.4)W = Fd cos θ.
Substituting the known values gives

(7.5)W = (75.0 N)(25.0 m) cos (35.0º)
= 1536 J = 1.54×103 J.

Converting the work in joules to kilocalories yields W = (1536 J)(1 kcal / 4184 J) = 0.367 kcal . The ratio of the work

done to the daily consumption is

(7.6)W
2400 kcal = 1.53×10−4.

Discussion

This ratio is a tiny fraction of what the person consumes, but it is typical. Very little of the energy released in the consumption
of food is used to do work. Even when we “work” all day long, less than 10% of our food energy intake is used to do work
and more than 90% is converted to thermal energy or stored as chemical energy in fat.
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Applying the Science Practices: Boxes on Floors

Plan and design an experiment to determine how much work you do on a box when you are pushing it over different floor
surfaces. Make sure your experiment can help you answer the following questions: What happens on different surfaces?
What happens if you take different routes across the same surface? Do you get different results with two people pushing on
perpendicular surfaces of the box? What if you vary the mass in the box? Remember to think about both your effort in any
given instant (a proxy for force exerted) and the total work you do. Also, when planning your experiments, remember that in
any given set of trials you should only change one variable.

You should find that you have to exert more effort on surfaces that will create more friction with the box, though you might be
surprised by which surfaces the box slides across easily. Longer routes result in your doing more work, even though the box
ends up in the same place. Two people pushing on perpendicular sides do less work for their total effort, due to the forces
and displacement not being parallel. A more massive box will take more effort to move.

Applying the Science Practices: Force-Displacement Diagrams

Suppose you are given two carts and a track to run them on, a motion detector, a force sensor, and a computer that can
record the data from the two sensors. Plan and design an experiment to measure the work done on one of the carts, and
compare your results to the work-energy theorem. Note that the motion detector can measure both displacement and
velocity versus time, while the force sensor measures force over time, and the carts have known masses. Recall that the
work-energy theorem states that the work done on a system (force over displacement) should equal the change in kinetic
energy. In your experimental design, describe and compare two possible ways to calculate the work done.

Sample Response: One possible technique is to set up the motion detector at one end of the track, and have the computer
record both displacement and velocity over time. Then attach the force sensor to one of the carts, and use this cart, through
the force sensor, to push the second cart toward the motion detector. Calculate the difference between the final and initial
kinetic energies (the kinetic energies after and before the push), and compare this to the area of a graph of force versus
displacement for the duration of the push. They should be the same.

7.2 Kinetic Energy and the Work-Energy Theorem

Learning Objectives
By the end of this section, you will be able to:

• Explain work as a transfer of energy and net work as the work done by the net force.
• Explain and apply the work-energy theorem.

The information presented in this section supports the following AP® learning objectives and science practices:

• 3.E.1.1 The student is able to make predictions about the changes in kinetic energy of an object based on
considerations of the direction of the net force on the object as the object moves. (S.P. 6.4, 7.2)

• 3.E.1.2 The student is able to use net force and velocity vectors to determine qualitatively whether kinetic energy of an
object would increase, decrease, or remain unchanged. (S.P. 1.4)

• 3.E.1.3 The student is able to use force and velocity vectors to determine qualitatively or quantitatively the net force
exerted on an object and qualitatively whether kinetic energy of that object would increase, decrease, or remain
unchanged. (S.P. 1.4, 2.2)

• 3.E.1.4 The student is able to apply mathematical routines to determine the change in kinetic energy of an object given
the forces on the object and the displacement of the object. (S.P. 2.2)

• 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

• 4.C.2.2 The student is able to apply the concepts of conservation of energy and the work-energy theorem to determine
qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy
of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. (S.P.
1.4, 2.2, 7.2)

• 5.B.5.3 The student is able to predict and calculate from graphical data the energy transfer to or work done on an
object or system from information about a force exerted on the object or system through a distance. (S.P. 1.5, 2.2, 6.4)

Work Transfers Energy
What happens to the work done on a system? Energy is transferred into the system, but in what form? Does it remain in the
system or move on? The answers depend on the situation. For example, if the lawn mower in Figure 7.2(a) is pushed just hard
enough to keep it going at a constant speed, then energy put into the mower by the person is removed continuously by friction,
and eventually leaves the system in the form of heat transfer. In contrast, work done on the briefcase by the person carrying it up
stairs in Figure 7.2(d) is stored in the briefcase-Earth system and can be recovered at any time, as shown in Figure 7.2(e). In
fact, the building of the pyramids in ancient Egypt is an example of storing energy in a system by doing work on the system.
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Some of the energy imparted to the stone blocks in lifting them during construction of the pyramids remains in the stone-Earth
system and has the potential to do work.

In this section we begin the study of various types of work and forms of energy. We will find that some types of work leave the
energy of a system constant, for example, whereas others change the system in some way, such as making it move. We will also
develop definitions of important forms of energy, such as the energy of motion.

Net Work and the Work-Energy Theorem
We know from the study of Newton’s laws in Dynamics: Force and Newton's Laws of Motion that net force causes
acceleration. We will see in this section that work done by the net force gives a system energy of motion, and in the process we
will also find an expression for the energy of motion.

Let us start by considering the total, or net, work done on a system. Net work is defined to be the sum of work done by all
external forces—that is, net work is the work done by the net external force Fnet . In equation form, this is

Wnet = Fnetd cos θ where θ is the angle between the force vector and the displacement vector.

Figure 7.3(a) shows a graph of force versus displacement for the component of the force in the direction of the
displacement—that is, an F cos θ vs. d graph. In this case, F cos θ is constant. You can see that the area under the graph is

Fd cos θ , or the work done. Figure 7.3(b) shows a more general process where the force varies. The area under the curve is

divided into strips, each having an average force (F cos θ)i(ave) . The work done is (F cos θ)i(ave)di for each strip, and the

total work done is the sum of the Wi . Thus the total work done is the total area under the curve, a useful property to which we

shall refer later.

Figure 7.3 (a) A graph of F cos θ vs. d , when F cos θ is constant. The area under the curve represents the work done by the force. (b) A

graph of F cos θ vs. d in which the force varies. The work done for each interval is the area of each strip; thus, the total area under the curve
equals the total work done.

Real World Connections: Work and Direction

Consider driving in a car. While moving, you have forward velocity and therefore kinetic energy. When you hit the brakes,
they exert a force opposite to your direction of motion (acting through the wheels). The brakes do work on your car and
reduce the kinetic energy. Similarly, when you accelerate, the engine (acting through the wheels) exerts a force in the
direction of motion. The engine does work on your car, and increases the kinetic energy. Finally, if you go around a corner at
a constant speed, you have the same kinetic energy both before and after the corner. The force exerted by the engine was
perpendicular to the direction of motion, and therefore did no work and did not change the kinetic energy.

Net work will be simpler to examine if we consider a one-dimensional situation where a force is used to accelerate an object in a
direction parallel to its initial velocity. Such a situation occurs for the package on the roller belt conveyor system shown in Figure
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7.4.

Figure 7.4 A package on a roller belt is pushed horizontally through a distance d .

The force of gravity and the normal force acting on the package are perpendicular to the displacement and do no work.
Moreover, they are also equal in magnitude and opposite in direction so they cancel in calculating the net force. The net force
arises solely from the horizontal applied force Fapp and the horizontal friction force f . Thus, as expected, the net force is

parallel to the displacement, so that θ = 0º and cos θ = 1 , and the net work is given by

(7.7)Wnet = Fnetd.

The effect of the net force Fnet is to accelerate the package from v0 to v . The kinetic energy of the package increases,

indicating that the net work done on the system is positive. (See Example 7.2.) By using Newton’s second law, and doing some
algebra, we can reach an interesting conclusion. Substituting Fnet = ma from Newton’s second law gives

(7.8)Wnet = mad.

To get a relationship between net work and the speed given to a system by the net force acting on it, we take d = x − x0 and

use the equation studied in Motion Equations for Constant Acceleration in One Dimension for the change in speed over a

distance d if the acceleration has the constant value a ; namely, v2 = v0
2 + 2ad (note that a appears in the expression for

the net work). Solving for acceleration gives a = v2 − v0
2

2d . When a is substituted into the preceding expression for Wnet , we

obtain

(7.9)
Wnet = m

⎛

⎝
⎜v2 − v0

2

2d
⎞

⎠
⎟d.

The d cancels, and we rearrange this to obtain

(7.10)W = 1
2mv2 − 1

2mv0
 2 .

This expression is called the work-energy theorem, and it actually applies in general (even for forces that vary in direction and
magnitude), although we have derived it for the special case of a constant force parallel to the displacement. The theorem

implies that the net work on a system equals the change in the quantity 1
2mv2 . This quantity is our first example of a form of

energy.

The Work-Energy Theorem

The net work on a system equals the change in the quantity 1
2mv2 .

(7.11)W net = 1
2mv2 − 1

2mv0
 2

The quantity 1
2mv2 in the work-energy theorem is defined to be the translational kinetic energy (KE) of a mass m moving at a

speed v . (Translational kinetic energy is distinct from rotational kinetic energy, which is considered later.) In equation form, the
translational kinetic energy,

(7.12)KE = 1
2mv2,

is the energy associated with translational motion. Kinetic energy is a form of energy associated with the motion of a particle,
single body, or system of objects moving together.
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We are aware that it takes energy to get an object, like a car or the package in Figure 7.4, up to speed, but it may be a bit
surprising that kinetic energy is proportional to speed squared. This proportionality means, for example, that a car traveling at
100 km/h has four times the kinetic energy it has at 50 km/h, helping to explain why high-speed collisions are so devastating. We
will now consider a series of examples to illustrate various aspects of work and energy.

Applying the Science Practices: Cars on a Hill

Assemble a ramp suitable for rolling some toy cars up or down. Then plan a series of experiments to determine how the
direction of a force relative to the velocity of an object alters the kinetic energy of the object. Note that gravity will be pointing
down in all cases. What happens if you start the car at the top? How about at the bottom, with an initial velocity that is
increasing? If your ramp is wide enough, what happens if you send the toy car straight across? Does varying the surface of
the ramp change your results?

Sample Response: When the toy car is going down the ramp, with a component of gravity in the same direction, the kinetic
energy increases. Sending the car up the ramp decreases the kinetic energy, as gravity is opposing the motion. Sending the
car sideways should result in little to no change. If you have a surface that generates more friction than a smooth surface
(carpet), note that the friction always opposed the motion, and hence decreases the kinetic energy.

Example 7.2 Calculating the Kinetic Energy of a Package

Suppose a 30.0-kg package on the roller belt conveyor system in Figure 7.4 is moving at 0.500 m/s. What is its kinetic
energy?

Strategy

Because the mass m and speed v are given, the kinetic energy can be calculated from its definition as given in the

equation KE = 1
2mv2 .

Solution

The kinetic energy is given by

(7.13)KE = 1
2mv2.

Entering known values gives

(7.14)KE = 0.5(30.0 kg)(0.500 m/s)2,

which yields

(7.15)KE = 3.75 kg ⋅ m2/s2 = 3.75 J.

Discussion

Note that the unit of kinetic energy is the joule, the same as the unit of work, as mentioned when work was first defined. It is
also interesting that, although this is a fairly massive package, its kinetic energy is not large at this relatively low speed. This
fact is consistent with the observation that people can move packages like this without exhausting themselves.

Real World Connections: Center of Mass

Suppose we have two experimental carts, of equal mass, latched together on a track with a compressed spring between
them. When the latch is released, the spring does 10 J of work on the carts (we’ll see how in a couple of sections). The carts
move relative to the spring, which is the center of mass of the system. However, the center of mass stays fixed. How can we
consider the kinetic energy of this system?

By the work-energy theorem, the work done by the spring on the carts must turn into kinetic energy. So this system has 10 J
of kinetic energy. The total kinetic energy of the system is the kinetic energy of the center of mass of the system relative to
the fixed origin plus the kinetic energy of each cart relative to the center of mass. We know that the center of mass relative to
the fixed origin does not move, and therefore all of the kinetic energy must be distributed among the carts relative to the
center of mass. Since the carts have equal mass, they each receive an equal amount of kinetic energy, so each cart has 5.0
J of kinetic energy.

In our example, the forces between the spring and each cart are internal to the system. According to Newton’s third law,
these internal forces will cancel since they are equal and opposite in direction. However, this does not imply that these
internal forces will not do work. Thus, the change in kinetic energy of the system is caused by work done by the force of the
spring, and results in the motion of the two carts relative to the center of mass.

Example 7.3 Determining the Work to Accelerate a Package

Suppose that you push on the 30.0-kg package in Figure 7.4 with a constant force of 120 N through a distance of 0.800 m,
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and that the opposing friction force averages 5.00 N.

(a) Calculate the net work done on the package. (b) Solve the same problem as in part (a), this time by finding the work
done by each force that contributes to the net force.

Strategy and Concept for (a)

This is a motion in one dimension problem, because the downward force (from the weight of the package) and the normal
force have equal magnitude and opposite direction, so that they cancel in calculating the net force, while the applied force,
friction, and the displacement are all horizontal. (See Figure 7.4.) As expected, the net work is the net force times distance.

Solution for (a)

The net force is the push force minus friction, or Fnet = 120 N – 5.00 N = 115 N . Thus the net work is

(7.16)Wnet = Fnetd = (115 N)(0.800 m)
= 92.0 N ⋅ m = 92.0 J.

Discussion for (a)

This value is the net work done on the package. The person actually does more work than this, because friction opposes the
motion. Friction does negative work and removes some of the energy the person expends and converts it to thermal energy.
The net work equals the sum of the work done by each individual force.

Strategy and Concept for (b)

The forces acting on the package are gravity, the normal force, the force of friction, and the applied force. The normal force
and force of gravity are each perpendicular to the displacement, and therefore do no work.

Solution for (b)

The applied force does work.

(7.17)Wapp = Fappd cos(0º) = Fappd
= (120 N)(0.800 m)
= 96.0 J

The friction force and displacement are in opposite directions, so that θ = 180º , and the work done by friction is

(7.18)Wfr = Ffrd cos(180º) = −Ffrd
= −(5.00 N)(0.800 m)
= −4.00 J.

So the amounts of work done by gravity, by the normal force, by the applied force, and by friction are, respectively,

(7.19)Wgr = 0,
WN = 0,
Wapp = 96.0 J,
Wfr = − 4.00 J.

The total work done as the sum of the work done by each force is then seen to be

(7.20)Wtotal = Wgr + WN + Wapp + Wfr = 92.0 J.

Discussion for (b)

The calculated total work Wtotal as the sum of the work by each force agrees, as expected, with the work Wnet done by

the net force. The work done by a collection of forces acting on an object can be calculated by either approach.

Example 7.4 Determining Speed from Work and Energy

Find the speed of the package in Figure 7.4 at the end of the push, using work and energy concepts.

Strategy

Here the work-energy theorem can be used, because we have just calculated the net work, Wnet , and the initial kinetic

energy, 1
2mv0

2 . These calculations allow us to find the final kinetic energy, 1
2mv2 , and thus the final speed v .

Solution

The work-energy theorem in equation form is

274 Chapter 7 | Work, Energy, and Energy Resources

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



(7.21)Wnet = 1
2mv2 − 1

2mv0
2.

Solving for 1
2mv2 gives

(7.22)1
2mv2 = Wnet + 1

2mv0
2.

Thus,

(7.23)1
2mv2 = 92.0 J+3.75 J = 95.75 J.

Solving for the final speed as requested and entering known values gives

(7.24)
v = 2(95.75 J)

m = 191.5 kg ⋅ m2/s2

30.0 kg
= 2.53 m/s.

Discussion

Using work and energy, we not only arrive at an answer, we see that the final kinetic energy is the sum of the initial kinetic
energy and the net work done on the package. This means that the work indeed adds to the energy of the package.

Example 7.5 Work and Energy Can Reveal Distance, Too

How far does the package in Figure 7.4 coast after the push, assuming friction remains constant? Use work and energy
considerations.

Strategy

We know that once the person stops pushing, friction will bring the package to rest. In terms of energy, friction does negative
work until it has removed all of the package’s kinetic energy. The work done by friction is the force of friction times the
distance traveled times the cosine of the angle between the friction force and displacement; hence, this gives us a way of
finding the distance traveled after the person stops pushing.

Solution

The normal force and force of gravity cancel in calculating the net force. The horizontal friction force is then the net force,
and it acts opposite to the displacement, so θ = 180º . To reduce the kinetic energy of the package to zero, the work Wfr
by friction must be minus the kinetic energy that the package started with plus what the package accumulated due to the
pushing. Thus Wfr = −95.75 J . Furthermore, Wfr = f d′ cos θ = – f d′ , where d′ is the distance it takes to stop. Thus,

(7.25)
d′ = −Wfr

f = −−95.75 J
5.00 N ,

and so

(7.26)d′ = 19.2 m.
Discussion

This is a reasonable distance for a package to coast on a relatively friction-free conveyor system. Note that the work done
by friction is negative (the force is in the opposite direction of motion), so it removes the kinetic energy.

Some of the examples in this section can be solved without considering energy, but at the expense of missing out on gaining
insights about what work and energy are doing in this situation. On the whole, solutions involving energy are generally shorter
and easier than those using kinematics and dynamics alone.

7.3 Gravitational Potential Energy

Learning Objectives
By the end of this section, you will be able to:

• Explain gravitational potential energy in terms of work done against gravity.
• Show that the gravitational potential energy of an object of mass m at height h on Earth is given by PEg = mgh.
• Show how knowledge of potential energy as a function of position can be used to simplify calculations and explain

physical phenomena.
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The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

• 5.B.1.1 The student is able to set up a representation or model showing that a single object can only have kinetic
energy and use information about that object to calculate its kinetic energy. (S.P. 1.4, 2.2)

• 5.B.1.2 The student is able to translate between a representation of a single object, which can only have kinetic energy,
and a system that includes the object, which may have both kinetic and potential energies. (S.P. 1.5)

Work Done Against Gravity
Climbing stairs and lifting objects is work in both the scientific and everyday sense—it is work done against the gravitational
force. When there is work, there is a transformation of energy. The work done against the gravitational force goes into an
important form of stored energy that we will explore in this section.

Let us calculate the work done in lifting an object of mass m through a height h , such as in Figure 7.5. If the object is lifted
straight up at constant speed, then the force needed to lift it is equal to its weight mg . The work done on the mass is then

W = Fd = mgh . We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth

system. This energy is associated with the state of separation between two objects that attract each other by the gravitational
force. For convenience, we refer to this as the PEg gained by the object, recognizing that this is energy stored in the

gravitational field of Earth. Why do we use the word “system”? Potential energy is a property of a system rather than of a single
object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the
Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it
increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position,
we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but
this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to
the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a
ladder will be the same for the first two rungs as for the last two rungs.

Converting Between Potential Energy and Kinetic Energy
Gravitational potential energy may be converted to other forms of energy, such as kinetic energy. If we release the mass,
gravitational force will do an amount of work equal to mgh on it, thereby increasing its kinetic energy by that same amount (by

the work-energy theorem). We will find it more useful to consider just the conversion of PEg to KE without explicitly

considering the intermediate step of work. (See Example 7.7.) This shortcut makes it is easier to solve problems using energy (if
possible) rather than explicitly using forces.
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Figure 7.5 (a) The work done to lift the weight is stored in the mass-Earth system as gravitational potential energy. (b) As the weight moves downward,
this gravitational potential energy is transferred to the cuckoo clock.

More precisely, we define the change in gravitational potential energy ΔPEg to be

(7.27)ΔPEg = mgh,

where, for simplicity, we denote the change in height by h rather than the usual Δh . Note that h is positive when the final
height is greater than the initial height, and vice versa. For example, if a 0.500-kg mass hung from a cuckoo clock is raised 1.00
m, then its change in gravitational potential energy is

(7.28)mgh = ⎛
⎝0.500 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠(1.00 m)

= 4.90 kg ⋅ m2/s2 = 4.90 J.

Note that the units of gravitational potential energy turn out to be joules, the same as for work and other forms of energy. As the
clock runs, the mass is lowered. We can think of the mass as gradually giving up its 4.90 J of gravitational potential energy,
without directly considering the force of gravity that does the work.

Using Potential Energy to Simplify Calculations

The equation ΔPEg = mgh applies for any path that has a change in height of h , not just when the mass is lifted straight up.

(See Figure 7.6.) It is much easier to calculate mgh (a simple multiplication) than it is to calculate the work done along a

complicated path. The idea of gravitational potential energy has the double advantage that it is very broadly applicable and it
makes calculations easier. From now on, we will consider that any change in vertical position h of a mass m is accompanied

by a change in gravitational potential energy mgh , and we will avoid the equivalent but more difficult task of calculating work

done by or against the gravitational force.
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Figure 7.6 The change in gravitational potential energy (ΔPEg) between points A and B is independent of the path. ΔPEg = mgh for any path

between the two points. Gravity is one of a small class of forces where the work done by or against the force depends only on the starting and ending
points, not on the path between them.

Example 7.6 The Force to Stop Falling

A 60.0-kg person jumps onto the floor from a height of 3.00 m. If he lands stiffly (with his knee joints compressing by 0.500
cm), calculate the force on the knee joints.

Strategy

This person’s energy is brought to zero in this situation by the work done on him by the floor as he stops. The initial PEg is

transformed into KE as he falls. The work done by the floor reduces this kinetic energy to zero.

Solution

The work done on the person by the floor as he stops is given by

(7.29)W = Fd cos θ = −Fd,

with a minus sign because the displacement while stopping and the force from floor are in opposite directions
(cos θ = cos 180º = − 1) . The floor removes energy from the system, so it does negative work.

The kinetic energy the person has upon reaching the floor is the amount of potential energy lost by falling through height h :

(7.30)KE = −ΔPEg = −mgh,

The distance d that the person’s knees bend is much smaller than the height h of the fall, so the additional change in
gravitational potential energy during the knee bend is ignored.

The work W done by the floor on the person stops the person and brings the person’s kinetic energy to zero:

(7.31)W = −KE = mgh.

Combining this equation with the expression for W gives

(7.32)−Fd = mgh.

Recalling that h is negative because the person fell down, the force on the knee joints is given by

(7.33)
F = −mgh

d = −
⎛
⎝60.0 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠(−3.00 m)

5.00×10−3 m
= 3.53×105 N.
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Discussion

Such a large force (500 times more than the person’s weight) over the short impact time is enough to break bones. A much
better way to cushion the shock is by bending the legs or rolling on the ground, increasing the time over which the force
acts. A bending motion of 0.5 m this way yields a force 100 times smaller than in the example. A kangaroo's hopping shows
this method in action. The kangaroo is the only large animal to use hopping for locomotion, but the shock in hopping is
cushioned by the bending of its hind legs in each jump.(See Figure 7.7.)

Figure 7.7 The work done by the ground upon the kangaroo reduces its kinetic energy to zero as it lands. However, by applying the force of the ground
on the hind legs over a longer distance, the impact on the bones is reduced. (credit: Chris Samuel, Flickr)

Example 7.7 Finding the Speed of a Roller Coaster from its Height

(a) What is the final speed of the roller coaster shown in Figure 7.8 if it starts from rest at the top of the 20.0 m hill and work
done by frictional forces is negligible? (b) What is its final speed (again assuming negligible friction) if its initial speed is 5.00
m/s?

Figure 7.8 The speed of a roller coaster increases as gravity pulls it downhill and is greatest at its lowest point. Viewed in terms of energy, the
roller-coaster-Earth system’s gravitational potential energy is converted to kinetic energy. If work done by friction is negligible, all ΔPEg is

converted to KE .

Strategy

The roller coaster loses potential energy as it goes downhill. We neglect friction, so that the remaining force exerted by the
track is the normal force, which is perpendicular to the direction of motion and does no work. The net work on the roller
coaster is then done by gravity alone. The loss of gravitational potential energy from moving downward through a distance
h equals the gain in kinetic energy. This can be written in equation form as −ΔPEg = ΔKE . Using the equations for
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PEg and KE , we can solve for the final speed v , which is the desired quantity.

Solution for (a)

Here the initial kinetic energy is zero, so that ΔKE = 1
2mv2 . The equation for change in potential energy states that

ΔPEg = mgh . Since h is negative in this case, we will rewrite this as ΔPEg = −mg ∣ h ∣ to show the minus sign

clearly. Thus,

(7.34)−ΔPEg = ΔKE

becomes

(7.35)mg ∣ h ∣ = 1
2mv2.

Solving for v , we find that mass cancels and that

(7.36)v = 2g ∣ h ∣ .

Substituting known values,

(7.37)v = 2⎛
⎝9.80 m/s2⎞

⎠(20.0 m)
= 19.8 m/s.

Solution for (b)

Again − ΔPEg = ΔKE . In this case there is initial kinetic energy, so ΔKE = 1
2mv2 − 1

2mv0
2 . Thus,

(7.38)mg ∣ h ∣ = 1
2mv2 − 1

2mv0
2.

Rearranging gives

(7.39)1
2mv2 = mg ∣ h ∣ + 1

2mv0
2.

This means that the final kinetic energy is the sum of the initial kinetic energy and the gravitational potential energy. Mass
again cancels, and

(7.40)v = 2g ∣ h ∣ + v0
2.

This equation is very similar to the kinematics equation v = v0
2 + 2ad , but it is more general—the kinematics equation is

valid only for constant acceleration, whereas our equation above is valid for any path regardless of whether the object
moves with a constant acceleration. Now, substituting known values gives

(7.41)v = 2(9.80 m/s2)(20.0 m) + (5.00 m/s)2

= 20.4 m/s.
Discussion and Implications

First, note that mass cancels. This is quite consistent with observations made in Falling Objects that all objects fall at the
same rate if friction is negligible. Second, only the speed of the roller coaster is considered; there is no information about its
direction at any point. This reveals another general truth. When friction is negligible, the speed of a falling body depends
only on its initial speed and height, and not on its mass or the path taken. For example, the roller coaster will have the same
final speed whether it falls 20.0 m straight down or takes a more complicated path like the one in the figure. Third, and
perhaps unexpectedly, the final speed in part (b) is greater than in part (a), but by far less than 5.00 m/s. Finally, note that
speed can be found at any height along the way by simply using the appropriate value of h at the point of interest.

We have seen that work done by or against the gravitational force depends only on the starting and ending points, and not on the
path between, allowing us to define the simplifying concept of gravitational potential energy. We can do the same thing for a few
other forces, and we will see that this leads to a formal definition of the law of conservation of energy.

Making Connections: Take-Home Investigation—Converting Potential to Kinetic Energy

One can study the conversion of gravitational potential energy into kinetic energy in this experiment. On a smooth, level
surface, use a ruler of the kind that has a groove running along its length and a book to make an incline (see Figure 7.9).
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Place a marble at the 10-cm position on the ruler and let it roll down the ruler. When it hits the level surface, measure the
time it takes to roll one meter. Now place the marble at the 20-cm and the 30-cm positions and again measure the times it
takes to roll 1 m on the level surface. Find the velocity of the marble on the level surface for all three positions. Plot velocity
squared versus the distance traveled by the marble. What is the shape of each plot? If the shape is a straight line, the plot
shows that the marble’s kinetic energy at the bottom is proportional to its potential energy at the release point.

Figure 7.9 A marble rolls down a ruler, and its speed on the level surface is measured.

7.4 Conservative Forces and Potential Energy

Learning Objectives
By the end of this section, you will be able to:

• Define conservative force, potential energy, and mechanical energy.
• Explain the potential energy of a spring in terms of its compression when Hooke’s law applies.
• Use the work-energy theorem to show how having only conservative forces leads to conservation of mechanical

energy.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.1 The student is able to calculate the total energy of a system and justify the mathematical routines used in the
calculation of component types of energy within the system whose sum is the total energy. (S.P. 1.4, 2.1, 2.2)

• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

• 5.B.1.1 The student is able to set up a representation or model showing that a single object can only have kinetic
energy and use information about that object to calculate its kinetic energy. (S.P. 1.4, 2.2)

• 5.B.1.2 The student is able to translate between a representation of a single object, which can only have kinetic energy,
and a system that includes the object, which may have both kinetic and potential energies. (S.P. 1.5)

• 5.B.3.1 The student is able to describe and make qualitative and/or quantitative predictions about everyday examples
of systems with internal potential energy. (S.P. 2.2, 6.4, 7.2)

• 5.B.3.2 The student is able to make quantitative calculations of the internal potential energy of a system from a
description or diagram of that system. (S.P. 1.4, 2.2)

• 5.B.3.3 The student is able to apply mathematical reasoning to create a description of the internal potential energy of a
system from a description or diagram of the objects and interactions in that system. (S.P. 1.4, 2.2)

Potential Energy and Conservative Forces
Work is done by a force, and some forces, such as weight, have special characteristics. A conservative force is one, like the
gravitational force, for which work done by or against it depends only on the starting and ending points of a motion and not on the
path taken. We can define a potential energy (PE) for any conservative force, just as we did for the gravitational force. For

example, when you wind up a toy, an egg timer, or an old-fashioned watch, you do work against its spring and store energy in it.
(We treat these springs as ideal, in that we assume there is no friction and no production of thermal energy.) This stored energy
is recoverable as work, and it is useful to think of it as potential energy contained in the spring. Indeed, the reason that the spring
has this characteristic is that its force is conservative. That is, a conservative force results in stored or potential energy.
Gravitational potential energy is one example, as is the energy stored in a spring. We will also see how conservative forces are
related to the conservation of energy.

Potential Energy and Conservative Forces

Potential energy is the energy a system has due to position, shape, or configuration. It is stored energy that is completely
recoverable.

A conservative force is one for which work done by or against it depends only on the starting and ending points of a motion
and not on the path taken.
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We can define a potential energy (PE) for any conservative force. The work done against a conservative force to reach a

final configuration depends on the configuration, not the path followed, and is the potential energy added.

Real World Connections: Energy of a Bowling Ball

How much energy does a bowling ball have? (Just think about it for a minute.)

If you are thinking that you need more information, you’re right. If we can measure the ball’s velocity, then determining its
kinetic energy is simple. Note that this does require defining a reference frame in which to measure the velocity. Determining
the ball’s potential energy also requires more information. You need to know its height above the ground, which requires a
reference frame of the ground. Without the ground—in other words, Earth—the ball does not classically have potential
energy. Potential energy comes from the interaction between the ball and the ground. Another way of thinking about this is to
compare the ball’s potential energy on Earth and on the Moon. A bowling ball a certain height above Earth is going to have
more potential energy than the same bowling ball the same height above the surface of the Moon, because Earth has
greater mass than the Moon and therefore exerts more gravity on the ball. Thus, potential energy requires a system of at
least two objects, or an object with an internal structure of at least two parts.

Potential Energy of a Spring

First, let us obtain an expression for the potential energy stored in a spring ( PEs ). We calculate the work done to stretch or

compress a spring that obeys Hooke’s law. (Hooke’s law was examined in Elasticity: Stress and Strain, and states that the
magnitude of force F on the spring and the resulting deformation ΔL are proportional, F = kΔL .) (See Figure 7.10.) For our

spring, we will replace ΔL (the amount of deformation produced by a force F ) by the distance x that the spring is stretched or

compressed along its length. So the force needed to stretch the spring has magnitude F = kx , where k is the spring’s force

constant. The force increases linearly from 0 at the start to kx in the fully stretched position. The average force is kx / 2 . Thus

the work done in stretching or compressing the spring is Ws = Fd = ⎛
⎝
kx
2

⎞
⎠x = 1

2kx2 . Alternatively, we noted in Kinetic Energy

and the Work-Energy Theorem that the area under a graph of F vs. x is the work done by the force. In Figure 7.10(c) we

see that this area is also 1
2kx2 . We therefore define the potential energy of a spring, PEs , to be

(7.42)PEs = 1
2kx2,

where k is the spring’s force constant and x is the displacement from its undeformed position. The potential energy represents
the work done on the spring and the energy stored in it as a result of stretching or compressing it a distance x . The potential

energy of the spring PEs does not depend on the path taken; it depends only on the stretch or squeeze x in the final

configuration.

Figure 7.10 (a) An undeformed spring has no PEs stored in it. (b) The force needed to stretch (or compress) the spring a distance x has a

magnitude F = kx , and the work done to stretch (or compress) it is 1
2kx2 . Because the force is conservative, this work is stored as potential

energy (PEs) in the spring, and it can be fully recovered. (c) A graph of F vs. x has a slope of k , and the area under the graph is 1
2kx2 . Thus

the work done or potential energy stored is 1
2kx2 .

The equation PEs = 1
2kx2 has general validity beyond the special case for which it was derived. Potential energy can be stored

in any elastic medium by deforming it. Indeed, the general definition of potential energy is energy due to position, shape, or
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configuration. For shape or position deformations, stored energy is PEs = 1
2kx2 , where k is the force constant of the particular

system and x is its deformation. Another example is seen in Figure 7.11 for a guitar string.

Figure 7.11 Work is done to deform the guitar string, giving it potential energy. When released, the potential energy is converted to kinetic energy and
back to potential as the string oscillates back and forth. A very small fraction is dissipated as sound energy, slowly removing energy from the string.

Conservation of Mechanical Energy
Let us now consider what form the work-energy theorem takes when only conservative forces are involved. This will lead us to
the conservation of energy principle. The work-energy theorem states that the net work done by all forces acting on a system
equals its change in kinetic energy. In equation form, this is

(7.43)Wnet = 1
2mv2 − 1

2mv0
2 = ΔKE.

If only conservative forces act, then

(7.44)Wnet = Wc,

where Wc is the total work done by all conservative forces. Thus,

(7.45)Wc = ΔKE.

Now, if the conservative force, such as the gravitational force or a spring force, does work, the system loses potential energy.
That is, Wc = −ΔPE . Therefore,

(7.46)−ΔPE = ΔKE
or

(7.47)ΔKE + ΔPE = 0.
This equation means that the total kinetic and potential energy is constant for any process involving only conservative forces.
That is,

(7.48)KE + PE = constant    
or

KEi + PEi = KEf + PEf

⎫

⎭
⎬(conservative forces only),

where i and f denote initial and final values. This equation is a form of the work-energy theorem for conservative forces; it is
known as the conservation of mechanical energy principle. Remember that this applies to the extent that all the forces are
conservative, so that friction is negligible. The total kinetic plus potential energy of a system is defined to be its mechanical
energy, (KE + PE) . In a system that experiences only conservative forces, there is a potential energy associated with each

force, and the energy only changes form between KE and the various types of PE , with the total energy remaining constant.

The internal energy of a system is the sum of the kinetic energies of all of its elements, plus the potential energy due to all of the
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interactions due to conservative forces between all of the elements.

Real World Connections

Consider a wind-up toy, such as a car. It uses a spring system to store energy. The amount of energy stored depends only
on how many times it is wound, not how quickly or slowly the winding happens. Similarly, a dart gun using compressed air
stores energy in its internal structure. In this case, the energy stored inside depends only on how many times it is pumped,
not how quickly or slowly the pumping is done. The total energy put into the system, whether through winding or pumping, is
equal to the total energy conserved in the system (minus any energy loss in the system due to interactions between its
parts, such as air leaks in the dart gun). Since the internal energy of the system is conserved, you can calculate the amount
of stored energy by measuring the kinetic energy of the system (the moving car or dart) when the potential energy is
released.

Example 7.8 Using Conservation of Mechanical Energy to Calculate the Speed of a Toy Car

A 0.100-kg toy car is propelled by a compressed spring, as shown in Figure 7.12. The car follows a track that rises 0.180 m
above the starting point. The spring is compressed 4.00 cm and has a force constant of 250.0 N/m. Assuming work done by
friction to be negligible, find (a) how fast the car is going before it starts up the slope and (b) how fast it is going at the top of
the slope.

Figure 7.12 A toy car is pushed by a compressed spring and coasts up a slope. Assuming negligible friction, the potential energy in the spring is
first completely converted to kinetic energy, and then to a combination of kinetic and gravitational potential energy as the car rises. The details of
the path are unimportant because all forces are conservative—the car would have the same final speed if it took the alternate path shown.

Strategy

The spring force and the gravitational force are conservative forces, so conservation of mechanical energy can be used.
Thus,

(7.49)KEi +PEi = KEf + PEf

or

(7.50)1
2mv i

2 + mghi + 1
2kxi

2 = 1
2mvf

2 + mghf + 1
2kxf

2,

where h is the height (vertical position) and x is the compression of the spring. This general statement looks complex but
becomes much simpler when we start considering specific situations. First, we must identify the initial and final conditions in
a problem; then, we enter them into the last equation to solve for an unknown.

Solution for (a)

This part of the problem is limited to conditions just before the car is released and just after it leaves the spring. Take the
initial height to be zero, so that both hi and hf are zero. Furthermore, the initial speed vi is zero and the final

compression of the spring xf is zero, and so several terms in the conservation of mechanical energy equation are zero and

it simplifies to

(7.51)1
2kxi

2 = 1
2mvf

2.

In other words, the initial potential energy in the spring is converted completely to kinetic energy in the absence of friction.
Solving for the final speed and entering known values yields

(7.52)vf = k
mxi

= 250.0 N/m
0.100 kg (0.0400 m)

= 2.00 m/s.
Solution for (b)

One method of finding the speed at the top of the slope is to consider conditions just before the car is released and just after
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it reaches the top of the slope, completely ignoring everything in between. Doing the same type of analysis to find which
terms are zero, the conservation of mechanical energy becomes

(7.53)1
2kx i

 2 = 1
 2mvf

 2 + mghf.

This form of the equation means that the spring’s initial potential energy is converted partly to gravitational potential energy
and partly to kinetic energy. The final speed at the top of the slope will be less than at the bottom. Solving for vf and

substituting known values gives

(7.54)
vf = kxi

2

m − 2ghf

= ⎛
⎝
250.0 N/m
0.100 kg

⎞
⎠(0.0400 m)2 − 2(9.80 m/s2)(0.180 m)

= 0.687 m/s.
Discussion

Another way to solve this problem is to realize that the car’s kinetic energy before it goes up the slope is converted partly to
potential energy—that is, to take the final conditions in part (a) to be the initial conditions in part (b).

Applying the Science Practices: Potential Energy in a Spring

Suppose you are running an experiment in which two 250 g carts connected by a spring (with spring constant 120 N/m) are
run into a solid block, and the compression of the spring is measured. In one run of this experiment, the spring was
measured to compress from its rest length of 5.0 cm to a minimum length of 2.0 cm. What was the potential energy stored in
this system?

Answer

Note that the change in length of the spring is 3.0 cm. Hence we can apply Equation 7.42 to find that the potential
energy is PE = (1/2)(120 N/m)(0.030 m)2 = 0.0541 J.

Note that, for conservative forces, we do not directly calculate the work they do; rather, we consider their effects through their
corresponding potential energies, just as we did in Example 7.8. Note also that we do not consider details of the path
taken—only the starting and ending points are important (as long as the path is not impossible). This assumption is usually a
tremendous simplification, because the path may be complicated and forces may vary along the way.

PhET Explorations: Energy Skate Park

Learn about conservation of energy with a skater dude! Build tracks, ramps and jumps for the skater and view the kinetic
energy, potential energy and friction as he moves. You can also take the skater to different planets or even space!

Figure 7.13 Energy Skate Park (http://cnx.org/content/m55076/1.5/energy-skate-park_en.jar)

7.5 Nonconservative Forces

Learning Objectives
By the end of this section, you will be able to:

• Define nonconservative forces and explain how they affect mechanical energy.
• Show how the principle of conservation of energy can be applied by treating the conservative forces in terms of their

potential energies and any nonconservative forces in terms of the work they do.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.2 The student is able to predict changes in the total energy of a system due to changes in position and speed of
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objects or frictional interactions within the system. (S.P. 6.4)
• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a

component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

Nonconservative Forces and Friction
Forces are either conservative or nonconservative. Conservative forces were discussed in Conservative Forces and Potential
Energy. A nonconservative force is one for which work depends on the path taken. Friction is a good example of a
nonconservative force. As illustrated in Figure 7.14, work done against friction depends on the length of the path between the
starting and ending points. Because of this dependence on path, there is no potential energy associated with nonconservative
forces. An important characteristic is that the work done by a nonconservative force adds or removes mechanical energy from a
system. Friction, for example, creates thermal energy that dissipates, removing energy from the system. Furthermore, even if
the thermal energy is retained or captured, it cannot be fully converted back to work, so it is lost or not recoverable in that sense
as well.

Figure 7.14 The amount of the happy face erased depends on the path taken by the eraser between points A and B, as does the work done against
friction. Less work is done and less of the face is erased for the path in (a) than for the path in (b). The force here is friction, and most of the work goes
into thermal energy that subsequently leaves the system (the happy face plus the eraser). The energy expended cannot be fully recovered.

How Nonconservative Forces Affect Mechanical Energy
Mechanical energy may not be conserved when nonconservative forces act. For example, when a car is brought to a stop by
friction on level ground, it loses kinetic energy, which is dissipated as thermal energy, reducing its mechanical energy. Figure
7.15 compares the effects of conservative and nonconservative forces. We often choose to understand simpler systems such as
that described in Figure 7.15(a) first before studying more complicated systems as in Figure 7.15(b).

Figure 7.15 Comparison of the effects of conservative and nonconservative forces on the mechanical energy of a system. (a) A system with only
conservative forces. When a rock is dropped onto a spring, its mechanical energy remains constant (neglecting air resistance) because the force in the
spring is conservative. The spring can propel the rock back to its original height, where it once again has only potential energy due to gravity. (b) A
system with nonconservative forces. When the same rock is dropped onto the ground, it is stopped by nonconservative forces that dissipate its
mechanical energy as thermal energy, sound, and surface distortion. The rock has lost mechanical energy.

How the Work-Energy Theorem Applies
Now let us consider what form the work-energy theorem takes when both conservative and nonconservative forces act. We will
see that the work done by nonconservative forces equals the change in the mechanical energy of a system. As noted in Kinetic
Energy and the Work-Energy Theorem, the work-energy theorem states that the net work on a system equals the change in its
kinetic energy, or Wnet = ΔKE . The net work is the sum of the work by nonconservative forces plus the work by conservative

forces. That is,
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(7.55)Wnet = Wnc + Wc,

so that

(7.56)Wnc + Wc = ΔKE,

where Wnc is the total work done by all nonconservative forces and Wc is the total work done by all conservative forces.

Figure 7.16 A person pushes a crate up a ramp, doing work on the crate. Friction and gravitational force (not shown) also do work on the crate; both
forces oppose the person’s push. As the crate is pushed up the ramp, it gains mechanical energy, implying that the work done by the person is greater
than the work done by friction.

Consider Figure 7.16, in which a person pushes a crate up a ramp and is opposed by friction. As in the previous section, we
note that work done by a conservative force comes from a loss of gravitational potential energy, so that Wc = −ΔPE .

Substituting this equation into the previous one and solving for Wnc gives

(7.57)Wnc = ΔKE + ΔPE.

This equation means that the total mechanical energy (KE + PE) changes by exactly the amount of work done by

nonconservative forces. In Figure 7.16, this is the work done by the person minus the work done by friction. So even if energy is
not conserved for the system of interest (such as the crate), we know that an equal amount of work was done to cause the
change in total mechanical energy.

We rearrange Wnc = ΔKE + ΔPE to obtain

(7.58)KEi +PEi + Wnc = KEf + PEf .

This means that the amount of work done by nonconservative forces adds to the mechanical energy of a system. If Wnc is

positive, then mechanical energy is increased, such as when the person pushes the crate up the ramp in Figure 7.16. If Wnc is

negative, then mechanical energy is decreased, such as when the rock hits the ground in Figure 7.15(b). If Wnc is zero, then

mechanical energy is conserved, and nonconservative forces are balanced. For example, when you push a lawn mower at
constant speed on level ground, your work done is removed by the work of friction, and the mower has a constant energy.

Applying Energy Conservation with Nonconservative Forces

When no change in potential energy occurs, applying KEi +PEi + Wnc = KEf + PEf amounts to applying the work-energy

theorem by setting the change in kinetic energy to be equal to the net work done on the system, which in the most general case
includes both conservative and nonconservative forces. But when seeking instead to find a change in total mechanical energy in
situations that involve changes in both potential and kinetic energy, the previous equation KEi + PEi + Wnc = KEf + PEf
says that you can start by finding the change in mechanical energy that would have resulted from just the conservative forces,
including the potential energy changes, and add to it the work done, with the proper sign, by any nonconservative forces
involved.

Example 7.9 Calculating Distance Traveled: How Far a Baseball Player Slides

Consider the situation shown in Figure 7.17, where a baseball player slides to a stop on level ground. Using energy
considerations, calculate the distance the 65.0-kg baseball player slides, given that his initial speed is 6.00 m/s and the force
of friction against him is a constant 450 N.
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Figure 7.17 The baseball player slides to a stop in a distance d . In the process, friction removes the player’s kinetic energy by doing an amount

of work fd equal to the initial kinetic energy.

Strategy

Friction stops the player by converting his kinetic energy into other forms, including thermal energy. In terms of the work-
energy theorem, the work done by friction, which is negative, is added to the initial kinetic energy to reduce it to zero. The
work done by friction is negative, because f is in the opposite direction of the motion (that is, θ = 180º , and so

cos θ = −1 ). Thus Wnc = − fd . The equation simplifies to

(7.59)1
2mv i

2 − fd = 0

or

(7.60)fd = 1
2mv i

2.

This equation can now be solved for the distance d .

Solution

Solving the previous equation for d and substituting known values yields

(7.61)
d =

mv i
2

2 f

= (65.0 kg)(6.00 m/s)2

(2)(450 N)
= 2.60 m.

Discussion

The most important point of this example is that the amount of nonconservative work equals the change in mechanical
energy. For example, you must work harder to stop a truck, with its large mechanical energy, than to stop a mosquito.

Example 7.10 Calculating Distance Traveled: Sliding Up an Incline

Suppose that the player from Example 7.9 is running up a hill having a 5.00º incline upward with a surface similar to that in
the baseball stadium. The player slides with the same initial speed, and the frictional force is still 450 N. Determine how far
he slides.
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Figure 7.18 The same baseball player slides to a stop on a 5.00º slope.

Strategy

In this case, the work done by the nonconservative friction force on the player reduces the mechanical energy he has from
his kinetic energy at zero height, to the final mechanical energy he has by moving through distance d to reach height h
along the hill, with h = d sin 5.00º . This is expressed by the equation

(7.62)KE + PEi + Wnc = KEf + PEf .

Solution

The work done by friction is again Wnc = − fd ; initially the potential energy is PEi = mg ⋅ 0 = 0 and the kinetic energy

is KEi = 1
2mv i

2 ; the final energy contributions are KEf = 0 for the kinetic energy and PEf = mgh = mgd sin θ for

the potential energy.

Substituting these values gives

(7.63)1
2mv i

2 + 0 + ⎛
⎝ − fd⎞

⎠ = 0 + mgd sin θ.

Solve this for d to obtain

(7.64)
d =

⎛
⎝
1
2

⎞
⎠mv i

2

f + mg sin θ

= (0.5)(65.0 kg)(6.00 m/s)2

450 N+(65.0 kg)(9.80 m/s2) sin (5.00º)
= 2.31 m.

Discussion

As might have been expected, the player slides a shorter distance by sliding uphill. Note that the problem could also have
been solved in terms of the forces directly and the work energy theorem, instead of using the potential energy. This method
would have required combining the normal force and force of gravity vectors, which no longer cancel each other because
they point in different directions, and friction, to find the net force. You could then use the net force and the net work to find
the distance d that reduces the kinetic energy to zero. By applying conservation of energy and using the potential energy

instead, we need only consider the gravitational potential energy mgh , without combining and resolving force vectors. This

simplifies the solution considerably.

Making Connections: Take-Home Investigation—Determining Friction from the Stopping Distance

This experiment involves the conversion of gravitational potential energy into thermal energy. Use the ruler, book, and
marble from Making Connections: Take-Home Investigation—Converting Potential to Kinetic Energy. In addition, you
will need a foam cup with a small hole in the side, as shown in Figure 7.19. From the 10-cm position on the ruler, let the
marble roll into the cup positioned at the bottom of the ruler. Measure the distance d the cup moves before stopping. What
forces caused it to stop? What happened to the kinetic energy of the marble at the bottom of the ruler? Next, place the
marble at the 20-cm and the 30-cm positions and again measure the distance the cup moves after the marble enters it. Plot
the distance the cup moves versus the initial marble position on the ruler. Is this relationship linear?

With some simple assumptions, you can use these data to find the coefficient of kinetic friction µk of the cup on the table.

The force of friction f on the cup is µk N , where the normal force N is just the weight of the cup plus the marble. The

normal force and force of gravity do no work because they are perpendicular to the displacement of the cup, which moves
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horizontally. The work done by friction is fd . You will need the mass of the marble as well to calculate its initial kinetic

energy.

It is interesting to do the above experiment also with a steel marble (or ball bearing). Releasing it from the same positions on
the ruler as you did with the glass marble, is the velocity of this steel marble the same as the velocity of the marble at the
bottom of the ruler? Is the distance the cup moves proportional to the mass of the steel and glass marbles?

Figure 7.19 Rolling a marble down a ruler into a foam cup.

PhET Explorations: The Ramp

Explore forces, energy and work as you push household objects up and down a ramp. Lower and raise the ramp to see how
the angle of inclination affects the parallel forces acting on the file cabinet. Graphs show forces, energy and work.

Figure 7.20 The Ramp (http://cnx.org/content/m55047/1.5/the-ramp_en.jar)

7.6 Conservation of Energy

Learning Objectives
By the end of this section, you will be able to:

• Explain the law of the conservation of energy.
• Describe some of the many forms of energy.
• Define efficiency of an energy conversion process as the fraction left as useful energy or work, rather than being

transformed, for example, into thermal energy.

The information presented in this section supports the following AP® learning objectives and science practices:

• 4.C.1.2 The student is able to predict changes in the total energy of a system due to changes in position and speed of
objects or frictional interactions within the system. (S.P. 6.4)

• 4.C.2.1 The student is able to make predictions about the changes in the mechanical energy of a system when a
component of an external force acts parallel or antiparallel to the direction of the displacement of the center of mass.
(S.P. 6.4)

• 4.C.2.2 The student is able to apply the concepts of conservation of energy and the work-energy theorem to determine
qualitatively and/or quantitatively that work done on a two-object system in linear motion will change the kinetic energy
of the center of mass of the system, the potential energy of the systems, and/or the internal energy of the system. (S.P.
1.4, 2.2, 7.2)

• 5.A.2.1 The student is able to define open and closed systems for everyday situations and apply conservation concepts
for energy, charge, and linear momentum to those situations. (S.P. 6.4, 7.2)

• 5.B.5.4 The student is able to make claims about the interaction between a system and its environment in which the
environment exerts a force on the system, thus doing work on the system and changing the energy of the system
(kinetic energy plus potential energy). (S.P. 6.4, 7.2)

• 5.B.5.5 The student is able to predict and calculate the energy transfer to (i.e., the work done on) an object or system
from information about a force exerted on the object or system through a distance. (S.P. 2.2, 6.4)

Law of Conservation of Energy
Energy, as we have noted, is conserved, making it one of the most important physical quantities in nature. The law of
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conservation of energy can be stated as follows:

Total energy is constant in any process. It may change in form or be transferred from one system to another, but the total
remains the same.

We have explored some forms of energy and some ways it can be transferred from one system to another. This exploration led
to the definition of two major types of energy—mechanical energy (KE + PE) and energy transferred via work done by

nonconservative forces (Wnc) . But energy takes many other forms, manifesting itself in many different ways, and we need to be

able to deal with all of these before we can write an equation for the above general statement of the conservation of energy.

Other Forms of Energy than Mechanical Energy

At this point, we deal with all other forms of energy by lumping them into a single group called other energy ( OE ). Then we can
state the conservation of energy in equation form as

(7.65)KEi + PEi + Wnc + OEi = KEf + PEf + OEf.

All types of energy and work can be included in this very general statement of conservation of energy. Kinetic energy is KE ,

work done by a conservative force is represented by PE , work done by nonconservative forces is Wnc , and all other energies

are included as OE . This equation applies to all previous examples; in those situations OE was constant, and so it subtracted
out and was not directly considered.

Making Connections: Usefulness of the Energy Conservation Principle

The fact that energy is conserved and has many forms makes it very important. You will find that energy is discussed in
many contexts, because it is involved in all processes. It will also become apparent that many situations are best understood
in terms of energy and that problems are often most easily conceptualized and solved by considering energy.

When does OE play a role? One example occurs when a person eats. Food is oxidized with the release of carbon dioxide,
water, and energy. Some of this chemical energy is converted to kinetic energy when the person moves, to potential energy
when the person changes altitude, and to thermal energy (another form of OE ).

Some of the Many Forms of Energy
What are some other forms of energy? You can probably name a number of forms of energy not yet discussed. Many of these
will be covered in later chapters, but let us detail a few here. Electrical energy is a common form that is converted to many other
forms and does work in a wide range of practical situations. Fuels, such as gasoline and food, carry chemical energy that can
be transferred to a system through oxidation. Chemical fuel can also produce electrical energy, such as in batteries. Batteries
can in turn produce light, which is a very pure form of energy. Most energy sources on Earth are in fact stored energy from the
energy we receive from the Sun. We sometimes refer to this as radiant energy, or electromagnetic radiation, which includes
visible light, infrared, and ultraviolet radiation. Nuclear energy comes from processes that convert measurable amounts of mass
into energy. Nuclear energy is transformed into the energy of sunlight, into electrical energy in power plants, and into the energy
of the heat transfer and blast in weapons. Atoms and molecules inside all objects are in random motion. This internal mechanical
energy from the random motions is called thermal energy, because it is related to the temperature of the object. These and all
other forms of energy can be converted into one another and can do work.

Real World Connections: Open or Closed System?

Consider whether the following systems are open or closed: a car, a spring-operated dart gun, and the system shown in
Figure 7.15(a).

A car is not a closed system. You add energy in the form of more gas in the tank (or charging the batteries), and energy is
lost due to air resistance and friction.

A spring-operated dart gun is not a closed system. You have to initially compress the spring. Once that has been done,
however, the dart gun and dart can be treated as a closed system. All of the energy remains in the system consisting of
these two objects.

Figure 7.15(a) is an example of a closed system, once it has been started. All of the energy in the system remains there;
none is brought in from outside or leaves.

Table 7.1 gives the amount of energy stored, used, or released from various objects and in various phenomena. The range of
energies and the variety of types and situations is impressive.

Problem-Solving Strategies for Energy

You will find the following problem-solving strategies useful whenever you deal with energy. The strategies help in organizing
and reinforcing energy concepts. In fact, they are used in the examples presented in this chapter. The familiar general
problem-solving strategies presented earlier—involving identifying physical principles, knowns, and unknowns, checking
units, and so on—continue to be relevant here.
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Step 1. Determine the system of interest and identify what information is given and what quantity is to be calculated. A
sketch will help.

Step 2. Examine all the forces involved and determine whether you know or are given the potential energy from the work
done by the forces. Then use step 3 or step 4.

Step 3. If you know the potential energies for the forces that enter into the problem, then forces are all conservative, and you
can apply conservation of mechanical energy simply in terms of potential and kinetic energy. The equation expressing
conservation of energy is

(7.66)KEi + PEi = KEf + PEf.

Step 4. If you know the potential energy for only some of the forces, possibly because some of them are nonconservative
and do not have a potential energy, or if there are other energies that are not easily treated in terms of force and work, then
the conservation of energy law in its most general form must be used.

(7.67)KEi + PEi + Wnc + OEi = KEf + PEf + OEf.

In most problems, one or more of the terms is zero, simplifying its solution. Do not calculate Wc , the work done by

conservative forces; it is already incorporated in the PE terms.

Step 5. You have already identified the types of work and energy involved (in step 2). Before solving for the unknown,
eliminate terms wherever possible to simplify the algebra. For example, choose h = 0 at either the initial or final point, so

that PEg is zero there. Then solve for the unknown in the customary manner.

Step 6. Check the answer to see if it is reasonable. Once you have solved a problem, reexamine the forms of work and
energy to see if you have set up the conservation of energy equation correctly. For example, work done against friction
should be negative, potential energy at the bottom of a hill should be less than that at the top, and so on. Also check to see
that the numerical value obtained is reasonable. For example, the final speed of a skateboarder who coasts down a 3-m-
high ramp could reasonably be 20 km/h, but not 80 km/h.

Transformation of Energy
The transformation of energy from one form into others is happening all the time. The chemical energy in food is converted into
thermal energy through metabolism; light energy is converted into chemical energy through photosynthesis. In a larger example,
the chemical energy contained in coal is converted into thermal energy as it burns to turn water into steam in a boiler. This
thermal energy in the steam in turn is converted to mechanical energy as it spins a turbine, which is connected to a generator to
produce electrical energy. (In all of these examples, not all of the initial energy is converted into the forms mentioned. This
important point is discussed later in this section.)

Another example of energy conversion occurs in a solar cell. Sunlight impinging on a solar cell (see Figure 7.21) produces
electricity, which in turn can be used to run an electric motor. Energy is converted from the primary source of solar energy into
electrical energy and then into mechanical energy.

Figure 7.21 Solar energy is converted into electrical energy by solar cells, which is used to run a motor in this solar-power aircraft. (credit: NASA)
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Table 7.1 Energy of Various Objects and Phenomena

Object/phenomenon Energy in joules

Big Bang 1068

Energy released in a supernova 1044

Fusion of all the hydrogen in Earth’s oceans 1034

Annual world energy use 4×1020

Large fusion bomb (9 megaton) 3.8×1016

1 kg hydrogen (fusion to helium) 6.4×1014

1 kg uranium (nuclear fission) 8.0×1013

Hiroshima-size fission bomb (10 kiloton) 4.2×1013

90,000-ton aircraft carrier at 30 knots 1.1×1010

1 barrel crude oil 5.9×109

1 ton TNT 4.2×109

1 gallon of gasoline 1.2×108

Daily home electricity use (developed countries) 7×107

Daily adult food intake (recommended) 1.2×107

1000-kg car at 90 km/h 3.1×105

1 g fat (9.3 kcal) 3.9×104

ATP hydrolysis reaction 3.2×104

1 g carbohydrate (4.1 kcal) 1.7×104

1 g protein (4.1 kcal) 1.7×104

Tennis ball at 100 km/h 22

Mosquito ⎛
⎝10–2 g at 0.5 m/s⎞

⎠ 1.3×10−6

Single electron in a TV tube beam 4.0×10−15

Energy to break one DNA strand 10−19

Efficiency
Even though energy is conserved in an energy conversion process, the output of useful energy or work will be less than the
energy input. The efficiency Eff of an energy conversion process is defined as

(7.68)
Efficien (Eff ) = useful energy or work output

total energy input = Wout
Ein

.

Table 7.2 lists some efficiencies of mechanical devices and human activities. In a coal-fired power plant, for example, about 40%
of the chemical energy in the coal becomes useful electrical energy. The other 60% transforms into other (perhaps less useful)
energy forms, such as thermal energy, which is then released to the environment through combustion gases and cooling towers.
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Table 7.2 Efficiency of the Human Body and
Mechanical Devices

Activity/device Efficiency (%)[1]

Cycling and climbing 20

Swimming, surface 2

Swimming, submerged 4

Shoveling 3

Weightlifting 9

Steam engine 17

Gasoline engine 30

Diesel engine 35

Nuclear power plant 35

Coal power plant 42

Electric motor 98

Compact fluorescent light 20

Gas heater (residential) 90

Solar cell 10

PhET Explorations: Masses and Springs

A realistic mass and spring laboratory. Hang masses from springs and adjust the spring stiffness and damping. You can
even slow time. Transport the lab to different planets. A chart shows the kinetic, potential, and thermal energies for each
spring.

Figure 7.22 Masses and Springs (http://cnx.org/content/m55049/1.4/mass-spring-lab_en.jar)

7.7 Power

Learning Objectives
By the end of this section, you will be able to:

• Calculate power by calculating changes in energy over time.
• Examine power consumption and calculations of the cost of energy consumed.

What is Power?
Power—the word conjures up many images: a professional football player muscling aside his opponent, a dragster roaring away
from the starting line, a volcano blowing its lava into the atmosphere, or a rocket blasting off, as in Figure 7.23.

1. Representative values
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Figure 7.23 This powerful rocket on the Space Shuttle Endeavor did work and consumed energy at a very high rate. (credit: NASA)

These images of power have in common the rapid performance of work, consistent with the scientific definition of power ( P ) as
the rate at which work is done.

Power

Power is the rate at which work is done.

(7.69)P = W
t

The SI unit for power is the watt ( W ), where 1 watt equals 1 joule/second (1 W = 1 J/s).

Because work is energy transfer, power is also the rate at which energy is expended. A 60-W light bulb, for example, expends 60
J of energy per second. Great power means a large amount of work or energy developed in a short time. For example, when a
powerful car accelerates rapidly, it does a large amount of work and consumes a large amount of fuel in a short time.

Calculating Power from Energy
Example 7.11 Calculating the Power to Climb Stairs

What is the power output for a 60.0-kg woman who runs up a 3.00 m high flight of stairs in 3.50 s, starting from rest but
having a final speed of 2.00 m/s? (See Figure 7.24.)

Figure 7.24 When this woman runs upstairs starting from rest, she converts the chemical energy originally from food into kinetic energy and
gravitational potential energy. Her power output depends on how fast she does this.

Strategy and Concept
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The work going into mechanical energy is W= KE + PE . At the bottom of the stairs, we take both KE and PEg as

initially zero; thus, W = KEf + PEg = 1
2mvf

2 + mgh , where h is the vertical height of the stairs. Because all terms are

given, we can calculate W and then divide it by time to get power.

Solution

Substituting the expression for W into the definition of power given in the previous equation, P = W / t yields

(7.70)
P = W

t =
1
2mvf

2 + mgh
t .

Entering known values yields

(7.71)
P =

0.5⎛
⎝60.0 kg⎞

⎠(2.00 m/s)2 + ⎛
⎝60.0 kg⎞

⎠
⎛
⎝9.80 m/s2⎞

⎠(3.00 m)
3.50 s

= 120 J + 1764 J
3.50 s

= 538 W.
Discussion

The woman does 1764 J of work to move up the stairs compared with only 120 J to increase her kinetic energy; thus, most
of her power output is required for climbing rather than accelerating.

It is impressive that this woman’s useful power output is slightly less than 1 horsepower (1 hp = 746 W) ! People can

generate more than a horsepower with their leg muscles for short periods of time by rapidly converting available blood sugar and
oxygen into work output. (A horse can put out 1 hp for hours on end.) Once oxygen is depleted, power output decreases and the
person begins to breathe rapidly to obtain oxygen to metabolize more food—this is known as the aerobic stage of exercise. If the
woman climbed the stairs slowly, then her power output would be much less, although the amount of work done would be the
same.

Making Connections: Take-Home Investigation—Measure Your Power Rating

Determine your own power rating by measuring the time it takes you to climb a flight of stairs. We will ignore the gain in
kinetic energy, as the above example showed that it was a small portion of the energy gain. Don’t expect that your output will
be more than about 0.5 hp.

Examples of Power
Examples of power are limited only by the imagination, because there are as many types as there are forms of work and energy.
(See Table 7.3 for some examples.) Sunlight reaching Earth’s surface carries a maximum power of about 1.3 kilowatts per

square meter (kW/m2). A tiny fraction of this is retained by Earth over the long term. Our consumption rate of fossil fuels is far

greater than the rate at which they are stored, so it is inevitable that they will be depleted. Power implies that energy is
transferred, perhaps changing form. It is never possible to change one form completely into another without losing some of it as
thermal energy. For example, a 60-W incandescent bulb converts only 5 W of electrical power to light, with 55 W dissipating into
thermal energy. Furthermore, the typical electric power plant converts only 35 to 40% of its fuel into electricity. The remainder
becomes a huge amount of thermal energy that must be dispersed as heat transfer, as rapidly as it is created. A coal-fired power

plant may produce 1000 megawatts; 1 megawatt (MW) is 106 W of electric power. But the power plant consumes chemical
energy at a rate of about 2500 MW, creating heat transfer to the surroundings at a rate of 1500 MW. (See Figure 7.25.)
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Figure 7.25 Tremendous amounts of electric power are generated by coal-fired power plants such as this one in China, but an even larger amount of
power goes into heat transfer to the surroundings. The large cooling towers here are needed to transfer heat as rapidly as it is produced. The transfer
of heat is not unique to coal plants but is an unavoidable consequence of generating electric power from any fuel—nuclear, coal, oil, natural gas, or the
like. (credit: Kleinolive, Wikimedia Commons)

Table 7.3 Power Output or Consumption

Object or Phenomenon Power in Watts

Supernova (at peak) 5×1037

Milky Way galaxy 1037

Crab Nebula pulsar 1028

The Sun 4×1026

Volcanic eruption (maximum) 4×1015

Lightning bolt 2×1012

Nuclear power plant (total electric and heat transfer) 3×109

Aircraft carrier (total useful and heat transfer) 108

Dragster (total useful and heat transfer) 2×106

Car (total useful and heat transfer) 8×104

Football player (total useful and heat transfer) 5×103

Clothes dryer 4×103

Person at rest (all heat transfer) 100

Typical incandescent light bulb (total useful and heat transfer) 60

Heart, person at rest (total useful and heat transfer) 8

Electric clock 3

Pocket calculator 10−3

Power and Energy Consumption
We usually have to pay for the energy we use. It is interesting and easy to estimate the cost of energy for an electrical appliance
if its power consumption rate and time used are known. The higher the power consumption rate and the longer the appliance is
used, the greater the cost of that appliance. The power consumption rate is P = W / t = E / t , where E is the energy supplied
by the electricity company. So the energy consumed over a time t is
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(7.72)E = Pt.

Electricity bills state the energy used in units of kilowatt-hours (kW ⋅ h), which is the product of power in kilowatts and time in

hours. This unit is convenient because electrical power consumption at the kilowatt level for hours at a time is typical.

Example 7.12 Calculating Energy Costs

What is the cost of running a 0.200-kW computer 6.00 h per day for 30.0 d if the cost of electricity is $0.120 per kW ⋅ h ?

Strategy

Cost is based on energy consumed; thus, we must find E from E = Pt and then calculate the cost. Because electrical

energy is expressed in kW ⋅ h , at the start of a problem such as this it is convenient to convert the units into kW and
hours.

Solution

The energy consumed in kW ⋅ h is

(7.73)E = Pt = (0.200 kW)(6.00 h/d)(30.0 d)
= 36.0 kW ⋅ h,

and the cost is simply given by

(7.74)cost = (36.0 kW ⋅ h)($0.120 per kW ⋅ h) = $4.32 per month.

Discussion

The cost of using the computer in this example is neither exorbitant nor negligible. It is clear that the cost is a combination of
power and time. When both are high, such as for an air conditioner in the summer, the cost is high.

The motivation to save energy has become more compelling with its ever-increasing price. Armed with the knowledge that
energy consumed is the product of power and time, you can estimate costs for yourself and make the necessary value
judgments about where to save energy. Either power or time must be reduced. It is most cost-effective to limit the use of high-
power devices that normally operate for long periods of time, such as water heaters and air conditioners. This would not include
relatively high power devices like toasters, because they are on only a few minutes per day. It would also not include electric
clocks, in spite of their 24-hour-per-day usage, because they are very low power devices. It is sometimes possible to use devices
that have greater efficiencies—that is, devices that consume less power to accomplish the same task. One example is the
compact fluorescent light bulb, which produces over four times more light per watt of power consumed than its incandescent
cousin.

Modern civilization depends on energy, but current levels of energy consumption and production are not sustainable. The
likelihood of a link between global warming and fossil fuel use (with its concomitant production of carbon dioxide), has made
reduction in energy use as well as a shift to non-fossil fuels of the utmost importance. Even though energy in an isolated system
is a conserved quantity, the final result of most energy transformations is waste heat transfer to the environment, which is no
longer useful for doing work. As we will discuss in more detail in Thermodynamics, the potential for energy to produce useful
work has been “degraded” in the energy transformation.

7.8 Work, Energy, and Power in Humans

Learning Objectives
By the end of this section, you will be able to:

• Explain the human body’s consumption of energy when at rest versus when engaged in activities that do useful work.
• Calculate the conversion of chemical energy in food into useful work.

Energy Conversion in Humans
Our own bodies, like all living organisms, are energy conversion machines. Conservation of energy implies that the chemical
energy stored in food is converted into work, thermal energy, and/or stored as chemical energy in fatty tissue. (See Figure 7.26.)
The fraction going into each form depends both on how much we eat and on our level of physical activity. If we eat more than is
needed to do work and stay warm, the remainder goes into body fat.
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Figure 7.26 Energy consumed by humans is converted to work, thermal energy, and stored fat. By far the largest fraction goes to thermal energy,
although the fraction varies depending on the type of physical activity.

Power Consumed at Rest
The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate. The total
energy conversion rate of a person at rest is called the basal metabolic rate (BMR) and is divided among various systems in the
body, as shown in Table 7.4. The largest fraction goes to the liver and spleen, with the brain coming next. Of course, during
vigorous exercise, the energy consumption of the skeletal muscles and heart increase markedly. About 75% of the calories
burned in a day go into these basic functions. The BMR is a function of age, gender, total body weight, and amount of muscle
mass (which burns more calories than body fat). Athletes have a greater BMR due to this last factor.

Table 7.4 Basal Metabolic Rates (BMR)

Organ Power consumed at rest (W) Oxygen consumption (mL/min) Percent of BMR

Liver & spleen 23 67 27

Brain 16 47 19

Skeletal muscle 15 45 18

Kidney 9 26 10

Heart 6 17 7

Other 16 48 19

Totals 85 W 250 mL/min 100%

Energy consumption is directly proportional to oxygen consumption because the digestive process is basically one of oxidizing
food. We can measure the energy people use during various activities by measuring their oxygen use. (See Figure 7.27.)
Approximately 20 kJ of energy are produced for each liter of oxygen consumed, independent of the type of food. Table 7.5
shows energy and oxygen consumption rates (power expended) for a variety of activities.

Power of Doing Useful Work
Work done by a person is sometimes called useful work, which is work done on the outside world, such as lifting weights. Useful
work requires a force exerted through a distance on the outside world, and so it excludes internal work, such as that done by the
heart when pumping blood. Useful work does include that done in climbing stairs or accelerating to a full run, because these are
accomplished by exerting forces on the outside world. Forces exerted by the body are nonconservative, so that they can change
the mechanical energy ( KE + PE ) of the system worked upon, and this is often the goal. A baseball player throwing a ball, for
example, increases both the ball’s kinetic and potential energy.

If a person needs more energy than they consume, such as when doing vigorous work, the body must draw upon the chemical
energy stored in fat. So exercise can be helpful in losing fat. However, the amount of exercise needed to produce a loss in fat, or
to burn off extra calories consumed that day, can be large, as Example 7.13 illustrates.

Example 7.13 Calculating Weight Loss from Exercising

If a person who normally requires an average of 12,000 kJ (3000 kcal) of food energy per day consumes 13,000 kJ per day,
he will steadily gain weight. How much bicycling per day is required to work off this extra 1000 kJ?

Solution

Table 7.5 states that 400 W are used when cycling at a moderate speed. The time required to work off 1000 kJ at this rate is
then

(7.75)Time = energy
⎛
⎝
energy
time

⎞
⎠

= 1000 kJ
400 W = 2500 s = 42 min.
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Discussion

If this person uses more energy than he or she consumes, the person’s body will obtain the needed energy by metabolizing
body fat. If the person uses 13,000 kJ but consumes only 12,000 kJ, then the amount of fat loss will be

(7.76)
Fat loss = (1000 kJ)⎛⎝

1.0 g fat
39 kJ

⎞
⎠ = 26 g,

assuming the energy content of fat to be 39 kJ/g.

Figure 7.27 A pulse oxymeter is an apparatus that measures the amount of oxygen in blood. Oxymeters can be used to determine a person’s
metabolic rate, which is the rate at which food energy is converted to another form. Such measurements can indicate the level of athletic conditioning
as well as certain medical problems. (credit: UusiAjaja, Wikimedia Commons)

Table 7.5 Energy and Oxygen Consumption Rates[2] (Power)

Activity Energy consumption in watts Oxygen consumption in liters O2/min

Sleeping 83 0.24

Sitting at rest 120 0.34

Standing relaxed 125 0.36

Sitting in class 210 0.60

Walking (5 km/h) 280 0.80

Cycling (13–18 km/h) 400 1.14

Shivering 425 1.21

Playing tennis 440 1.26

Swimming breaststroke 475 1.36

Ice skating (14.5 km/h) 545 1.56

Climbing stairs (116/min) 685 1.96

Cycling (21 km/h) 700 2.00

Running cross-country 740 2.12

Playing basketball 800 2.28

Cycling, professional racer 1855 5.30

Sprinting 2415 6.90

All bodily functions, from thinking to lifting weights, require energy. (See Figure 7.28.) The many small muscle actions
accompanying all quiet activity, from sleeping to head scratching, ultimately become thermal energy, as do less visible muscle
actions by the heart, lungs, and digestive tract. Shivering, in fact, is an involuntary response to low body temperature that pits
muscles against one another to produce thermal energy in the body (and do no work). The kidneys and liver consume a
surprising amount of energy, but the biggest surprise of all it that a full 25% of all energy consumed by the body is used to
maintain electrical potentials in all living cells. (Nerve cells use this electrical potential in nerve impulses.) This bioelectrical
energy ultimately becomes mostly thermal energy, but some is utilized to power chemical processes such as in the kidneys and
liver, and in fat production.

2. for an average 76-kg male
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Figure 7.28 This fMRI scan shows an increased level of energy consumption in the vision center of the brain. Here, the patient was being asked to
recognize faces. (credit: NIH via Wikimedia Commons)

7.9 World Energy Use

Learning Objectives
By the end of this section, you will be able to:

• Describe the distinction between renewable and nonrenewable energy sources.
• Explain why the inevitable conversion of energy to less useful forms makes it necessary to conserve energy resources.

Energy is an important ingredient in all phases of society. We live in a very interdependent world, and access to adequate and
reliable energy resources is crucial for economic growth and for maintaining the quality of our lives. But current levels of energy
consumption and production are not sustainable. About 40% of the world’s energy comes from oil, and much of that goes to
transportation uses. Oil prices are dependent as much upon new (or foreseen) discoveries as they are upon political events and
situations around the world. The U.S., with 4.5% of the world’s population, consumes 24% of the world’s oil production per year;
66% of that oil is imported!

Renewable and Nonrenewable Energy Sources
The principal energy resources used in the world are shown in Figure 7.29. The fuel mix has changed over the years but now is
dominated by oil, although natural gas and solar contributions are increasing. Renewable forms of energy are those sources
that cannot be used up, such as water, wind, solar, and biomass. About 85% of our energy comes from nonrenewable fossil
fuels—oil, natural gas, coal. The likelihood of a link between global warming and fossil fuel use, with its production of carbon
dioxide through combustion, has made, in the eyes of many scientists, a shift to non-fossil fuels of utmost importance—but it will
not be easy.

Figure 7.29 World energy consumption by source, in billions of kilowatt-hours: 2006. (credit: KVDP)

The World’s Growing Energy Needs
World energy consumption continues to rise, especially in the developing countries. (See Figure 7.30.) Global demand for
energy has tripled in the past 50 years and might triple again in the next 30 years. While much of this growth will come from the

Chapter 7 | Work, Energy, and Energy Resources 301



rapidly booming economies of China and India, many of the developed countries, especially those in Europe, are hoping to meet
their energy needs by expanding the use of renewable sources. Although presently only a small percentage, renewable energy is
growing very fast, especially wind energy. For example, Germany plans to meet 20% of its electricity and 10% of its overall
energy needs with renewable resources by the year 2020. (See Figure 7.31.) Energy is a key constraint in the rapid economic
growth of China and India. In 2003, China surpassed Japan as the world’s second largest consumer of oil. However, over 1/3 of
this is imported. Unlike most Western countries, coal dominates the commercial energy resources of China, accounting for 2/3 of
its energy consumption. In 2009 China surpassed the United States as the largest generator of CO2 . In India, the main energy

resources are biomass (wood and dung) and coal. Half of India’s oil is imported. About 70% of India’s electricity is generated by
highly polluting coal. Yet there are sizeable strides being made in renewable energy. India has a rapidly growing wind energy
base, and it has the largest solar cooking program in the world.

Figure 7.30 Past and projected world energy use (source: Based on data from U.S. Energy Information Administration, 2011)

Figure 7.31 Solar cell arrays at a power plant in Steindorf, Germany (credit: Michael Betke, Flickr)

Table 7.6 displays the 2006 commercial energy mix by country for some of the prime energy users in the world. While non-
renewable sources dominate, some countries get a sizeable percentage of their electricity from renewable resources. For
example, about 67% of New Zealand’s electricity demand is met by hydroelectric. Only 10% of the U.S. electricity is generated
by renewable resources, primarily hydroelectric. It is difficult to determine total contributions of renewable energy in some
countries with a large rural population, so these percentages in this table are left blank.
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Table 7.6 Energy Consumption—Selected Countries (2006)

Country
Consumption,
in EJ (1018 J)

Oil Natural
Gas Coal Nuclear Hydro Other

Renewables

Electricity
Use per
capita
(kWh/yr)

Energy
Use
per
capita
(GJ/yr)

Australia 5.4 34% 17% 44% 0% 3% 1% 10000 260

Brazil 9.6 48% 7% 5% 1% 35% 2% 2000 50

China 63 22% 3% 69% 1% 6% 1500 35

Egypt 2.4 50% 41% 1% 0% 6% 990 32

Germany 16 37% 24% 24% 11% 1% 3% 6400 173

India 15 34% 7% 52% 1% 5% 470 13

Indonesia 4.9 51% 26% 16% 0% 2% 3% 420 22

Japan 24 48% 14% 21% 12% 4% 1% 7100 176

New
Zealand 0.44 32% 26% 6% 0% 11% 19% 8500 102

Russia 31 19% 53% 16% 5% 6% 5700 202

U.S. 105 40% 23% 22% 8% 3% 1% 12500 340

World 432 39% 23% 24% 6% 6% 2% 2600 71

Energy and Economic Well-being
The last two columns in this table examine the energy and electricity use per capita. Economic well-being is dependent upon
energy use, and in most countries higher standards of living, as measured by GDP (gross domestic product) per capita, are
matched by higher levels of energy consumption per capita. This is borne out in Figure 7.32. Increased efficiency of energy use
will change this dependency. A global problem is balancing energy resource development against the harmful effects upon the
environment in its extraction and use.

Figure 7.32 Power consumption per capita versus GDP per capita for various countries. Note the increase in energy usage with increasing GDP.
(2007, credit: Frank van Mierlo, Wikimedia Commons)

Conserving Energy
As we finish this chapter on energy and work, it is relevant to draw some distinctions between two sometimes misunderstood
terms in the area of energy use. As has been mentioned elsewhere, the “law of the conservation of energy” is a very useful
principle in analyzing physical processes. It is a statement that cannot be proven from basic principles, but is a very good
bookkeeping device, and no exceptions have ever been found. It states that the total amount of energy in an isolated system will
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basal metabolic rate:

chemical energy:

conservation of mechanical energy:

conservative force:

efficiency:

electrical energy:

energy:

fossil fuels:

friction:

gravitational potential energy:

horsepower:

joule:

kilowatt-hour:

kinetic energy:

law of conservation of energy:

mechanical energy:

metabolic rate:

net work:

nonconservative force:

nuclear energy:

potential energy:

potential energy of a spring:

power:

always remain constant. Related to this principle, but remarkably different from it, is the important philosophy of energy
conservation. This concept has to do with seeking to decrease the amount of energy used by an individual or group through (1)
reduced activities (e.g., turning down thermostats, driving fewer kilometers) and/or (2) increasing conversion efficiencies in the
performance of a particular task—such as developing and using more efficient room heaters, cars that have greater miles-per-
gallon ratings, energy-efficient compact fluorescent lights, etc.

Since energy in an isolated system is not destroyed or created or generated, one might wonder why we need to be concerned
about our energy resources, since energy is a conserved quantity. The problem is that the final result of most energy
transformations is waste heat transfer to the environment and conversion to energy forms no longer useful for doing work. To
state it in another way, the potential for energy to produce useful work has been “degraded” in the energy transformation. (This
will be discussed in more detail in Thermodynamics.)

Glossary
the total energy conversion rate of a person at rest

the energy in a substance stored in the bonds between atoms and molecules that can be released in a
chemical reaction

the rule that the sum of the kinetic energies and potential energies remains constant if
only conservative forces act on and within a system

a force that does the same work for any given initial and final configuration, regardless of the path
followed

a measure of the effectiveness of the input of energy to do work; useful energy or work divided by the total input of
energy

the energy carried by a flow of charge

the ability to do work

oil, natural gas, and coal

the force between surfaces that opposes one sliding on the other; friction changes mechanical energy into thermal
energy

the energy an object has due to its position in a gravitational field

an older non-SI unit of power, with 1 hp = 746 W

SI unit of work and energy, equal to one newton-meter

(kW ⋅ h) unit used primarily for electrical energy provided by electric utility companies

the energy an object has by reason of its motion, equal to 1
2mv2 for the translational (i.e., non-rotational)

motion of an object of mass m moving at speed v

the general law that total energy is constant in any process; energy may change in form or
be transferred from one system to another, but the total remains the same

the sum of kinetic energy and potential energy

the rate at which the body uses food energy to sustain life and to do different activities

work done by the net force, or vector sum of all the forces, acting on an object

a force whose work depends on the path followed between the given initial and final configurations

energy released by changes within atomic nuclei, such as the fusion of two light nuclei or the fission of a
heavy nucleus

energy due to position, shape, or configuration

the stored energy of a spring as a function of its displacement; when Hooke’s law applies, it is

given by the expression 1
2kx2 where x is the distance the spring is compressed or extended and k is the spring

constant

the rate at which work is done
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radiant energy:

renewable forms of energy:

thermal energy:

useful work:

watt:

work:

work-energy theorem:

the energy carried by electromagnetic waves

those sources that cannot be used up, such as water, wind, solar, and biomass

the energy within an object due to the random motion of its atoms and molecules that accounts for the
object's temperature

work done on an external system

(W) SI unit of power, with 1 W = 1 J/s

the transfer of energy by a force that causes an object to be displaced; the product of the component of the force in the
direction of the displacement and the magnitude of the displacement

the result, based on Newton’s laws, that the net work done on an object is equal to its change in
kinetic energy

Section Summary

7.1 Work: The Scientific Definition
• Work is the transfer of energy by a force acting on an object as it is displaced.
• The work W that a force F does on an object is the product of the magnitude F of the force, times the magnitude d of

the displacement, times the cosine of the angle θ between them. In symbols,

W = Fd cos θ.
• The SI unit for work and energy is the joule (J), where 1 J = 1 N ⋅ m = 1 kg ⋅ m2/s2 .

• The work done by a force is zero if the displacement is either zero or perpendicular to the force.
• The work done is positive if the force and displacement have the same direction, and negative if they have opposite

direction.

7.2 Kinetic Energy and the Work-Energy Theorem
• The net work Wnet is the work done by the net force acting on an object.

• Work done on an object transfers energy to the object.

• The translational kinetic energy of an object of mass m moving at speed v is KE = 1
2mv2 .

• The work-energy theorem states that the net work Wnet on a system changes its kinetic energy,

Wnet = 1
2mv2 − 1

2mv0
2 .

7.3 Gravitational Potential Energy
• Work done against gravity in lifting an object becomes potential energy of the object-Earth system.
• The change in gravitational potential energy, ΔPEg , is ΔPEg = mgh , with h being the increase in height and g the

acceleration due to gravity.
• The gravitational potential energy of an object near Earth’s surface is due to its position in the mass-Earth system. Only

differences in gravitational potential energy, ΔPEg , have physical significance.

• As an object descends without friction, its gravitational potential energy changes into kinetic energy corresponding to
increasing speed, so that ΔKE= −ΔPEg .

7.4 Conservative Forces and Potential Energy
• A conservative force is one for which work depends only on the starting and ending points of a motion, not on the path

taken.
• We can define potential energy (PE) for any conservative force, just as we defined PEg for the gravitational force.

• The potential energy of a spring is PEs = 1
2kx2 , where k is the spring’s force constant and x is the displacement from

its undeformed position.
• Mechanical energy is defined to be KE + PE for a conservative force.

• When only conservative forces act on and within a system, the total mechanical energy is constant. In equation form,
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KE + PE = constant    
or

KEi + PEi = KEf + PEf

⎫

⎭
⎬

where i and f denote initial and final values. This is known as the conservation of mechanical energy.

7.5 Nonconservative Forces
• A nonconservative force is one for which work depends on the path.
• Friction is an example of a nonconservative force that changes mechanical energy into thermal energy.
• Work Wnc done by a nonconservative force changes the mechanical energy of a system. In equation form,

Wnc = ΔKE + ΔPE or, equivalently, KEi + PEi + Wnc = KEf + PEf .

• When both conservative and nonconservative forces act, energy conservation can be applied and used to calculate motion
in terms of the known potential energies of the conservative forces and the work done by nonconservative forces, instead
of finding the net work from the net force, or having to directly apply Newton’s laws.

7.6 Conservation of Energy
• The law of conservation of energy states that the total energy is constant in any process. Energy may change in form or be

transferred from one system to another, but the total remains the same.
• When all forms of energy are considered, conservation of energy is written in equation form as

KEi + PEi + Wnc + OEi = KEf + PEf + OEf , where OE is all other forms of energy besides mechanical energy.

• Commonly encountered forms of energy include electric energy, chemical energy, radiant energy, nuclear energy, and
thermal energy.

• Energy is often utilized to do work, but it is not possible to convert all the energy of a system to work.

• The efficiency Eff of a machine or human is defined to be Eff = Wout
Ein

, where Wout is useful work output and Ein is

the energy consumed.

7.7 Power
• Power is the rate at which work is done, or in equation form, for the average power P for work W done over a time t ,

P = W / t .

• The SI unit for power is the watt (W), where 1 W = 1 J/s .

• The power of many devices such as electric motors is also often expressed in horsepower (hp), where 1 hp = 746 W .

7.8 Work, Energy, and Power in Humans
• The human body converts energy stored in food into work, thermal energy, and/or chemical energy that is stored in fatty

tissue.
• The rate at which the body uses food energy to sustain life and to do different activities is called the metabolic rate, and the

corresponding rate when at rest is called the basal metabolic rate (BMR)
• The energy included in the basal metabolic rate is divided among various systems in the body, with the largest fraction

going to the liver and spleen, and the brain coming next.
• About 75% of food calories are used to sustain basic body functions included in the basal metabolic rate.
• The energy consumption of people during various activities can be determined by measuring their oxygen use, because the

digestive process is basically one of oxidizing food.

7.9 World Energy Use
• The relative use of different fuels to provide energy has changed over the years, but fuel use is currently dominated by oil,

although natural gas and solar contributions are increasing.
• Although non-renewable sources dominate, some countries meet a sizeable percentage of their electricity needs from

renewable resources.
• The United States obtains only about 10% of its energy from renewable sources, mostly hydroelectric power.
• Economic well-being is dependent upon energy use, and in most countries higher standards of living, as measured by GDP

(Gross Domestic Product) per capita, are matched by higher levels of energy consumption per capita.
• Even though, in accordance with the law of conservation of energy, energy can never be created or destroyed, energy that

can be used to do work is always partly converted to less useful forms, such as waste heat to the environment, in all of our
uses of energy for practical purposes.

306 Chapter 7 | Work, Energy, and Energy Resources

This OpenStax book is available for free at http://cnx.org/content/col11844/1.14



Conceptual Questions

7.1 Work: The Scientific Definition
1. Give an example of something we think of as work in everyday circumstances that is not work in the scientific sense. Is energy
transferred or changed in form in your example? If so, explain how this is accomplished without doing work.

2. Give an example of a situation in which there is a force and a displacement, but the force does no work. Explain why it does
no work.

3. Describe a situation in which a force is exerted for a long time but does no work. Explain.

7.2 Kinetic Energy and the Work-Energy Theorem
4. The person in Figure 7.33 does work on the lawn mower. Under what conditions would the mower gain energy? Under what
conditions would it lose energy?

Figure 7.33

5. Work done on a system puts energy into it. Work done by a system removes energy from it. Give an example for each
statement.

6. When solving for speed in Example 7.4, we kept only the positive root. Why?

7.3 Gravitational Potential Energy
7. In Example 7.7, we calculated the final speed of a roller coaster that descended 20 m in height and had an initial speed of 5
m/s downhill. Suppose the roller coaster had had an initial speed of 5 m/s uphill instead, and it coasted uphill, stopped, and then
rolled back down to a final point 20 m below the start. We would find in that case that its final speed is the same as its initial.
Explain in terms of conservation of energy.

8. Does the work you do on a book when you lift it onto a shelf depend on the path taken? On the time taken? On the height of
the shelf? On the mass of the book?

7.4 Conservative Forces and Potential Energy
9. What is a conservative force?

10. The force exerted by a diving board is conservative, provided the internal friction is negligible. Assuming friction is negligible,
describe changes in the potential energy of a diving board as a swimmer dives from it, starting just before the swimmer steps on
the board until just after his feet leave it.

11. Define mechanical energy. What is the relationship of mechanical energy to nonconservative forces? What happens to
mechanical energy if only conservative forces act?

12. What is the relationship of potential energy to conservative force?
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7.6 Conservation of Energy
13. Consider the following scenario. A car for which friction is not negligible accelerates from rest down a hill, running out of
gasoline after a short distance. The driver lets the car coast farther down the hill, then up and over a small crest. He then coasts
down that hill into a gas station, where he brakes to a stop and fills the tank with gasoline. Identify the forms of energy the car
has, and how they are changed and transferred in this series of events. (See Figure 7.34.)

Figure 7.34 A car experiencing non-negligible friction coasts down a hill, over a small crest, then downhill again, and comes to a stop at a gas station.

14. Describe the energy transfers and transformations for a javelin, starting from the point at which an athlete picks up the javelin
and ending when the javelin is stuck into the ground after being thrown.

15. Do devices with efficiencies of less than one violate the law of conservation of energy? Explain.

16. List four different forms or types of energy. Give one example of a conversion from each of these forms to another form.

17. List the energy conversions that occur when riding a bicycle.

7.7 Power
18. Most electrical appliances are rated in watts. Does this rating depend on how long the appliance is on? (When off, it is a zero-
watt device.) Explain in terms of the definition of power.

19. Explain, in terms of the definition of power, why energy consumption is sometimes listed in kilowatt-hours rather than joules.
What is the relationship between these two energy units?

20. A spark of static electricity, such as that you might receive from a doorknob on a cold dry day, may carry a few hundred watts
of power. Explain why you are not injured by such a spark.

7.8 Work, Energy, and Power in Humans
21. Explain why it is easier to climb a mountain on a zigzag path rather than one straight up the side. Is your increase in
gravitational potential energy the same in both cases? Is your energy consumption the same in both?

22. Do you do work on the outside world when you rub your hands together to warm them? What is the efficiency of this activity?

23. Shivering is an involuntary response to lowered body temperature. What is the efficiency of the body when shivering, and is
this a desirable value?

24. Discuss the relative effectiveness of dieting and exercise in losing weight, noting that most athletic activities consume food
energy at a rate of 400 to 500 W, while a single cup of yogurt can contain 1360 kJ (325 kcal). Specifically, is it likely that exercise
alone will be sufficient to lose weight? You may wish to consider that regular exercise may increase the metabolic rate, whereas
protracted dieting may reduce it.

7.9 World Energy Use
25. What is the difference between energy conservation and the law of conservation of energy? Give some examples of each.

26. If the efficiency of a coal-fired electrical generating plant is 35%, then what do we mean when we say that energy is a
conserved quantity?
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Problems & Exercises

7.1 Work: The Scientific Definition
1. How much work does a supermarket checkout attendant
do on a can of soup he pushes 0.600 m horizontally with a
force of 5.00 N? Express your answer in joules and
kilocalories.

2. A 75.0-kg person climbs stairs, gaining 2.50 meters in
height. Find the work done to accomplish this task.

3. (a) Calculate the work done on a 1500-kg elevator car by
its cable to lift it 40.0 m at constant speed, assuming friction
averages 100 N. (b) What is the work done on the lift by the
gravitational force in this process? (c) What is the total work
done on the lift?

4. Suppose a car travels 108 km at a speed of 30.0 m/s, and
uses 2.0 gal of gasoline. Only 30% of the gasoline goes into
useful work by the force that keeps the car moving at
constant speed despite friction. (See Table 7.1 for the energy
content of gasoline.) (a) What is the magnitude of the force
exerted to keep the car moving at constant speed? (b) If the
required force is directly proportional to speed, how many
gallons will be used to drive 108 km at a speed of 28.0 m/s?

5. Calculate the work done by an 85.0-kg man who pushes a
crate 4.00 m up along a ramp that makes an angle of 20.0º
with the horizontal. (See Figure 7.35.) He exerts a force of
500 N on the crate parallel to the ramp and moves at a
constant speed. Be certain to include the work he does on the
crate and on his body to get up the ramp.

Figure 7.35 A man pushes a crate up a ramp.

6. How much work is done by the boy pulling his sister 30.0 m
in a wagon as shown in Figure 7.36? Assume no friction acts
on the wagon.

Figure 7.36 The boy does work on the system of the wagon and the
child when he pulls them as shown.

7. A shopper pushes a grocery cart 20.0 m at constant speed
on level ground, against a 35.0 N frictional force. He pushes
in a direction 25.0º below the horizontal. (a) What is the
work done on the cart by friction? (b) What is the work done
on the cart by the gravitational force? (c) What is the work
done on the cart by the shopper? (d) Find the force the
shopper exerts, using energy considerations. (e) What is the
total work done on the cart?

8. Suppose the ski patrol lowers a rescue sled and victim,
having a total mass of 90.0 kg, down a 60.0º slope at
constant speed, as shown in Figure 7.37. The coefficient of
friction between the sled and the snow is 0.100. (a) How
much work is done by friction as the sled moves 30.0 m along
the hill? (b) How much work is done by the rope on the sled in
this distance? (c) What is the work done by the gravitational
force on the sled? (d) What is the total work done?

Figure 7.37 A rescue sled and victim are lowered down a steep slope.

7.2 Kinetic Energy and the Work-Energy
Theorem
9. Compare the kinetic energy of a 20,000-kg truck moving at
110 km/h with that of an 80.0-kg astronaut in orbit moving at
27,500 km/h.

10. (a) How fast must a 3000-kg elephant move to have the
same kinetic energy as a 65.0-kg sprinter running at 10.0 m/
s? (b) Discuss how the larger energies needed for the
movement of larger animals would relate to metabolic rates.

11. Confirm the value given for the kinetic energy of an
aircraft carrier in Table 7.1. You will need to look up the
definition of a nautical mile (1 knot = 1 nautical mile/h).

12. (a) Calculate the force needed to bring a 950-kg car to
rest from a speed of 90.0 km/h in a distance of 120 m (a fairly
typical distance for a non-panic stop). (b) Suppose instead
the car hits a concrete abutment at full speed and is brought
to a stop in 2.00 m. Calculate the force exerted on the car and
compare it with the force found in part (a).

13. A car’s bumper is designed to withstand a 4.0-km/h
(1.1-m/s) collision with an immovable object without damage
to the body of the car. The bumper cushions the shock by
absorbing the force over a distance. Calculate the magnitude
of the average force on a bumper that collapses 0.200 m
while bringing a 900-kg car to rest from an initial speed of 1.1
m/s.
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14. Boxing gloves are padded to lessen the force of a blow.
(a) Calculate the force exerted by a boxing glove on an
opponent’s face, if the glove and face compress 7.50 cm
during a blow in which the 7.00-kg arm and glove are brought
to rest from an initial speed of 10.0 m/s. (b) Calculate the
force exerted by an identical blow in the gory old days when
no gloves were used and the knuckles and face would
compress only 2.00 cm. (c) Discuss the magnitude of the
force with glove on. Does it seem high enough to cause
damage even though it is lower than the force with no glove?

15. Using energy considerations, calculate the average force
a 60.0-kg sprinter exerts backward on the track to accelerate
from 2.00 to 8.00 m/s in a distance of 25.0 m, if he
encounters a headwind that exerts an average force of 30.0 N
against him.

7.3 Gravitational Potential Energy
16. A hydroelectric power facility (see Figure 7.38) converts
the gravitational potential energy of water behind a dam to
electric energy. (a) What is the gravitational potential energy

relative to the generators of a lake of volume 50.0 km3 (

mass = 5.00×1013 kg) , given that the lake has an

average height of 40.0 m above the generators? (b) Compare
this with the energy stored in a 9-megaton fusion bomb.

Figure 7.38 Hydroelectric facility (credit: Denis Belevich, Wikimedia
Commons)

17. (a) How much gravitational potential energy (relative to
the ground on which it is built) is stored in the Great Pyramid

of Cheops, given that its mass is about 7 × 109  kg and its

center of mass is 36.5 m above the surrounding ground? (b)
How does this energy compare with the daily food intake of a
person?

18. Suppose a 350-g kookaburra (a large kingfisher bird)
picks up a 75-g snake and raises it 2.5 m from the ground to
a branch. (a) How much work did the bird do on the snake?
(b) How much work did it do to raise its own center of mass to
the branch?

19. In Example 7.7, we found that the speed of a roller
coaster that had descended 20.0 m was only slightly greater
when it had an initial speed of 5.00 m/s than when it started
from rest. This implies that ΔPE >> KEi . Confirm this

statement by taking the ratio of ΔPE to KEi . (Note that

mass cancels.)

20. A 100-g toy car is propelled by a compressed spring that
starts it moving. The car follows the curved track in Figure
7.39. Show that the final speed of the toy car is 0.687 m/s if
its initial speed is 2.00 m/s and it coasts up the frictionless
slope, gaining 0.180 m in altitude.

Figure 7.39 A toy car moves up a sloped track. (credit: Leszek
Leszczynski, Flickr)

21. In a downhill ski race, surprisingly, little advantage is
gained by getting a running start. (This is because the initial
kinetic energy is small compared with the gain in gravitational
potential energy on even small hills.) To demonstrate this, find
the final speed and the time taken for a skier who skies 70.0
m along a 30º slope neglecting friction: (a) Starting from
rest. (b) Starting with an initial speed of 2.50 m/s. (c) Does the
answer surprise you? Discuss why it is still advantageous to
get a running start in very competitive events.

7.4 Conservative Forces and Potential Energy

22. A 5.00×105-kg subway train is brought to a stop from a

speed of 0.500 m/s in 0.400 m by a large spring bumper at
the end of its track. What is the force constant k of the
spring?

23. A pogo stick has a spring with a force constant of

2.50×104 N/m , which can be compressed 12.0 cm. To
what maximum height can a child jump on the stick using only
the energy in the spring, if the child and stick have a total
mass of 40.0 kg? Explicitly show how you follow the steps in
the Problem-Solving Strategies for Energy.

7.5 Nonconservative Forces
24. A 60.0-kg skier with an initial speed of 12.0 m/s coasts up
a 2.50-m-high rise as shown in Figure 7.40. Find her final
speed at the top, given that the coefficient of friction between
her skis and the snow is 0.0800. (Hint: Find the distance
traveled up the incline assuming a straight-line path as shown
in the figure.)

Figure 7.40 The skier’s initial kinetic energy is partially used in coasting
to the top of a rise.
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25. (a) How high a hill can a car coast up (engine
disengaged) if work done by friction is negligible and its initial
speed is 110 km/h? (b) If, in actuality, a 750-kg car with an
initial speed of 110 km/h is observed to coast up a hill to a
height 22.0 m above its starting point, how much thermal
energy was generated by friction? (c) What is the average
force of friction if the hill has a slope 2.5º above the
horizontal?

7.6 Conservation of Energy
26. Using values from Table 7.1, how many DNA molecules
could be broken by the energy carried by a single electron in
the beam of an old-fashioned TV tube? (These electrons
were not dangerous in themselves, but they did create
dangerous x rays. Later model tube TVs had shielding that
absorbed x rays before they escaped and exposed viewers.)

27. Using energy considerations and assuming negligible air
resistance, show that a rock thrown from a bridge 20.0 m
above water with an initial speed of 15.0 m/s strikes the water
with a speed of 24.8 m/s independent of the direction thrown.

28. If the energy in fusion bombs were used to supply the
energy needs of the world, how many of the 9-megaton
variety would be needed for a year’s supply of energy (using
data from Table 7.1)? This is not as far-fetched as it may
sound—there are thousands of nuclear bombs, and their
energy can be trapped in underground explosions and
converted to electricity, as natural geothermal energy is.

29. (a) Use of hydrogen fusion to supply energy is a dream
that may be realized in the next century. Fusion would be a
relatively clean and almost limitless supply of energy, as can
be seen from Table 7.1. To illustrate this, calculate how many
years the present energy needs of the world could be
supplied by one millionth of the oceans’ hydrogen fusion
energy. (b) How does this time compare with historically
significant events, such as the duration of stable economic
systems?

7.7 Power
30. The Crab Nebula (see Figure 7.41) pulsar is the remnant
of a supernova that occurred in A.D. 1054. Using data from
Table 7.3, calculate the approximate factor by which the
power output of this astronomical object has declined since its
explosion.

Figure 7.41 Crab Nebula (credit: ESO, via Wikimedia Commons)

31. Suppose a star 1000 times brighter than our Sun (that is,
emitting 1000 times the power) suddenly goes supernova.
Using data from Table 7.3: (a) By what factor does its power
output increase? (b) How many times brighter than our entire
Milky Way galaxy is the supernova? (c) Based on your
answers, discuss whether it should be possible to observe
supernovas in distant galaxies. Note that there are on the

order of 1011 observable galaxies, the average brightness
of which is somewhat less than our own galaxy.

32. A person in good physical condition can put out 100 W of
useful power for several hours at a stretch, perhaps by
pedaling a mechanism that drives an electric generator.
Neglecting any problems of generator efficiency and practical
considerations such as resting time: (a) How many people
would it take to run a 4.00-kW electric clothes dryer? (b) How
many people would it take to replace a large electric power
plant that generates 800 MW?

33. What is the cost of operating a 3.00-W electric clock for a
year if the cost of electricity is $0.0900 per kW ⋅ h ?

34. A large household air conditioner may consume 15.0 kW
of power. What is the cost of operating this air conditioner
3.00 h per day for 30.0 d if the cost of electricity is $0.110 per
kW ⋅ h ?

35. (a) What is the average power consumption in watts of an
appliance that uses 5.00 kW ⋅ h of energy per day? (b)
How many joules of energy does this appliance consume in a
year?

36. (a) What is the average useful power output of a person

who does 6.00×106 J of useful work in 8.00 h? (b) Working
at this rate, how long will it take this person to lift 2000 kg of
bricks 1.50 m to a platform? (Work done to lift his body can be
omitted because it is not considered useful output here.)
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37. A 500-kg dragster accelerates from rest to a final speed of
110 m/s in 400 m (about a quarter of a mile) and encounters
an average frictional force of 1200 N. What is its average
power output in watts and horsepower if this takes 7.30 s?

38. (a) How long will it take an 850-kg car with a useful power
output of 40.0 hp (1 hp = 746 W) to reach a speed of 15.0 m/
s, neglecting friction? (b) How long will this acceleration take
if the car also climbs a 3.00-m-high hill in the process?

39. (a) Find the useful power output of an elevator motor that
lifts a 2500-kg load a height of 35.0 m in 12.0 s, if it also
increases the speed from rest to 4.00 m/s. Note that the total
mass of the counterbalanced system is 10,000 kg—so that
only 2500 kg is raised in height, but the full 10,000 kg is
accelerated. (b) What does it cost, if electricity is $0.0900 per
kW ⋅ h ?

40. (a) What is the available energy content, in joules, of a
battery that operates a 2.00-W electric clock for 18 months?

(b) How long can a battery that can supply 8.00×104 J run
a pocket calculator that consumes energy at the rate of

1.00×10−3 W ?

41. (a) How long would it take a 1.50×105 -kg airplane with
engines that produce 100 MW of power to reach a speed of
250 m/s and an altitude of 12.0 km if air resistance were
negligible? (b) If it actually takes 900 s, what is the power? (c)
Given this power, what is the average force of air resistance if
the airplane takes 1200 s? (Hint: You must find the distance
the plane travels in 1200 s assuming constant acceleration.)

42. Calculate the power output needed for a 950-kg car to
climb a 2.00º slope at a constant 30.0 m/s while
encountering wind resistance and friction totaling 600 N.
Explicitly show how you follow the steps in the Problem-
Solving Strategies for Energy.

43. (a) Calculate the power per square meter reaching Earth’s
upper atmosphere from the Sun. (Take the power output of

the Sun to be 4.00×1026 W.) (b) Part of this is absorbed

and reflected by the atmosphere, so that a maximum of

1.30 kW/m2 reaches Earth’s surface. Calculate the area in

km2 of solar energy collectors needed to replace an electric
power plant that generates 750 MW if the collectors convert
an average of 2.00% of the maximum power into electricity.
(This small conversion efficiency is due to the devices
themselves, and the fact that the sun is directly overhead only
briefly.) With the same assumptions, what area would be
needed to meet the United States’ energy needs

(1.05×1020 J)? Australia’s energy needs (5.4×1018 J)?

China’s energy needs (6.3×1019 J)? (These energy

consumption values are from 2006.)

7.8 Work, Energy, and Power in Humans
44. (a) How long can you rapidly climb stairs (116/min) on the
93.0 kcal of energy in a 10.0-g pat of butter? (b) How many
flights is this if each flight has 16 stairs?

45. (a) What is the power output in watts and horsepower of a
70.0-kg sprinter who accelerates from rest to 10.0 m/s in 3.00
s? (b) Considering the amount of power generated, do you
think a well-trained athlete could do this repetitively for long
periods of time?

46. Calculate the power output in watts and horsepower of a
shot-putter who takes 1.20 s to accelerate the 7.27-kg shot
from rest to 14.0 m/s, while raising it 0.800 m. (Do not include
the power produced to accelerate his body.)

Figure 7.42 Shot putter at the Dornoch Highland Gathering in 2007.
(credit: John Haslam, Flickr)

47. (a) What is the efficiency of an out-of-condition professor

who does 2.10×105  J of useful work while metabolizing
500 kcal of food energy? (b) How many food calories would a
well-conditioned athlete metabolize in doing the same work
with an efficiency of 20%?

48. Energy that is not utilized for work or heat transfer is
converted to the chemical energy of body fat containing about
39 kJ/g. How many grams of fat will you gain if you eat
10,000 kJ (about 2500 kcal) one day and do nothing but sit
relaxed for 16.0 h and sleep for the other 8.00 h? Use data
from Table 7.5 for the energy consumption rates of these
activities.

49. Using data from Table 7.5, calculate the daily energy
needs of a person who sleeps for 7.00 h, walks for 2.00 h,
attends classes for 4.00 h, cycles for 2.00 h, sits relaxed for
3.00 h, and studies for 6.00 h. (Studying consumes energy at
the same rate as sitting in class.)

50. What is the efficiency of a subject on a treadmill who puts
out work at the rate of 100 W while consuming oxygen at the
rate of 2.00 L/min? (Hint: See Table 7.5.)

51. Shoveling snow can be extremely taxing because the
arms have such a low efficiency in this activity. Suppose a
person shoveling a footpath metabolizes food at the rate of
800 W. (a) What is her useful power output? (b) How long will
it take her to lift 3000 kg of snow 1.20 m? (This could be the
amount of heavy snow on 20 m of footpath.) (c) How much
waste heat transfer in kilojoules will she generate in the
process?

52. Very large forces are produced in joints when a person
jumps from some height to the ground. (a) Calculate the
magnitude of the force produced if an 80.0-kg person jumps
from a 0.600–m-high ledge and lands stiffly, compressing joint
material 1.50 cm as a result. (Be certain to include the weight
of the person.) (b) In practice the knees bend almost
involuntarily to help extend the distance over which you stop.
Calculate the magnitude of the force produced if the stopping
distance is 0.300 m. (c) Compare both forces with the weight
of the person.
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53. Jogging on hard surfaces with insufficiently padded shoes
produces large forces in the feet and legs. (a) Calculate the
magnitude of the force needed to stop the downward motion
of a jogger’s leg, if his leg has a mass of 13.0 kg, a speed of
6.00 m/s, and stops in a distance of 1.50 cm. (Be certain to
include the weight of the 75.0-kg jogger’s body.) (b) Compare
this force with the weight of the jogger.

54. (a) Calculate the energy in kJ used by a 55.0-kg woman
who does 50 deep knee bends in which her center of mass is
lowered and raised 0.400 m. (She does work in both
directions.) You may assume her efficiency is 20%. (b) What
is the average power consumption rate in watts if she does
this in 3.00 min?

55. Kanellos Kanellopoulos flew 119 km from Crete to
Santorini, Greece, on April 23, 1988, in the Daedalus 88, an
aircraft powered by a bicycle-type drive mechanism (see
Figure 7.43). His useful power output for the 234-min trip was
about 350 W. Using the efficiency for cycling from Table 7.2,
calculate the food energy in kilojoules he metabolized during
the flight.

Figure 7.43 The Daedalus 88 in flight. (credit: NASA photo by Beasley)

56. The swimmer shown in Figure 7.44 exerts an average
horizontal backward force of 80.0 N with his arm during each
1.80 m long stroke. (a) What is his work output in each
stroke? (b) Calculate the power output of his arms if he does
120 strokes per minute.

Figure 7.44

57. Mountain climbers carry bottled oxygen when at very high
altitudes. (a) Assuming that a mountain climber uses oxygen
at twice the rate for climbing 116 stairs per minute (because
of low air temperature and winds), calculate how many liters
of oxygen a climber would need for 10.0 h of climbing. (These
are liters at sea level.) Note that only 40% of the inhaled
oxygen is utilized; the rest is exhaled. (b) How much useful
work does the climber do if he and his equipment have a
mass of 90.0 kg and he gains 1000 m of altitude? (c) What is
his efficiency for the 10.0-h climb?

58. The awe-inspiring Great Pyramid of Cheops was built
more than 4500 years ago. Its square base, originally 230 m
on a side, covered 13.1 acres, and it was 146 m high, with a

mass of about 7×109 kg . (The pyramid’s dimensions are

slightly different today due to quarrying and some sagging.)
Historians estimate that 20,000 workers spent 20 years to
construct it, working 12-hour days, 330 days per year. (a)
Calculate the gravitational potential energy stored in the
pyramid, given its center of mass is at one-fourth its height.
(b) Only a fraction of the workers lifted blocks; most were
involved in support services such as building ramps (see
Figure 7.45), bringing food and water, and hauling blocks to
the site. Calculate the efficiency of the workers who did the
lifting, assuming there were 1000 of them and they consumed
food energy at the rate of 300 kcal/h. What does your answer
imply about how much of their work went into block-lifting,
versus how much work went into friction and lifting and
lowering their own bodies? (c) Calculate the mass of food that
had to be supplied each day, assuming that the average
worker required 3600 kcal per day and that their diet was 5%
protein, 60% carbohydrate, and 35% fat. (These proportions
neglect the mass of bulk and nondigestible materials
consumed.)

Figure 7.45 Ancient pyramids were probably constructed using ramps
as simple machines. (credit: Franck Monnier, Wikimedia Commons)

59. (a) How long can you play tennis on the 800 kJ (about
200 kcal) of energy in a candy bar? (b) Does this seem like a
long time? Discuss why exercise is necessary but may not be
sufficient to cause a person to lose weight.
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7.9 World Energy Use
60. Integrated Concepts

(a) Calculate the force the woman in Figure 7.46 exerts to do
a push-up at constant speed, taking all data to be known to
three digits. (b) How much work does she do if her center of
mass rises 0.240 m? (c) What is her useful power output if
she does 25 push-ups in 1 min? (Should work done lowering
her body be included? See the discussion of useful work in
Work, Energy, and Power in Humans.

Figure 7.46 Forces involved in doing push-ups. The woman’s weight
acts as a force exerted downward on her center of gravity (CG).

61. Integrated Concepts

A 75.0-kg cross-country skier is climbing a 3.0º slope at a
constant speed of 2.00 m/s and encounters air resistance of
25.0 N. Find his power output for work done against the
gravitational force and air resistance. (b) What average force
does he exert backward on the snow to accomplish this? (c) If
he continues to exert this force and to experience the same
air resistance when he reaches a level area, how long will it
take him to reach a velocity of 10.0 m/s?

62. Integrated Concepts

The 70.0-kg swimmer in Figure 7.44 starts a race with an
initial velocity of 1.25 m/s and exerts an average force of 80.0
N backward with his arms during each 1.80 m long stroke. (a)
What is his initial acceleration if water resistance is 45.0 N?
(b) What is the subsequent average resistance force from the
water during the 5.00 s it takes him to reach his top velocity of
2.50 m/s? (c) Discuss whether water resistance seems to
increase linearly with velocity.

63. Integrated Concepts

A toy gun uses a spring with a force constant of 300 N/m to
propel a 10.0-g steel ball. If the spring is compressed 7.00 cm
and friction is negligible: (a) How much force is needed to
compress the spring? (b) To what maximum height can the
ball be shot? (c) At what angles above the horizontal may a
child aim to hit a target 3.00 m away at the same height as
the gun? (d) What is the gun’s maximum range on level
ground?

64. Integrated Concepts

(a) What force must be supplied by an elevator cable to

produce an acceleration of 0.800 m/s2 against a 200-N
frictional force, if the mass of the loaded elevator is 1500 kg?
(b) How much work is done by the cable in lifting the elevator
20.0 m? (c) What is the final speed of the elevator if it starts
from rest? (d) How much work went into thermal energy?

65. Unreasonable Results

A car advertisement claims that its 900-kg car accelerated
from rest to 30.0 m/s and drove 100 km, gaining 3.00 km in
altitude, on 1.0 gal of gasoline. The average force of friction
including air resistance was 700 N. Assume all values are
known to three significant figures. (a) Calculate the car’s
efficiency. (b) What is unreasonable about the result? (c)
Which premise is unreasonable, or which premises are
inconsistent?

66. Unreasonable Results

Body fat is metabolized, supplying 9.30 kcal/g, when dietary
intake is less than needed to fuel metabolism. The
manufacturers of an exercise bicycle claim that you can lose
0.500 kg of fat per day by vigorously exercising for 2.00 h per
day on their machine. (a) How many kcal are supplied by the
metabolization of 0.500 kg of fat? (b) Calculate the kcal/min
that you would have to utilize to metabolize fat at the rate of
0.500 kg in 2.00 h. (c) What is unreasonable about the
results? (d) Which premise is unreasonable, or which
premises are inconsistent?

67. Construct Your Own Problem

Consider a person climbing and descending stairs. Construct
a problem in which you calculate the long-term rate at which
stairs can be climbed considering the mass of the person, his
ability to generate power with his legs, and the height of a
single stair step. Also consider why the same person can
descend stairs at a faster rate for a nearly unlimited time in
spite of the fact that very similar forces are exerted going
down as going up. (This points to a fundamentally different
process for descending versus climbing stairs.)

68. Construct Your Own Problem

Consider humans generating electricity by pedaling a device
similar to a stationary bicycle. Construct a problem in which
you determine the number of people it would take to replace a
large electrical generation facility. Among the things to
consider are the power output that is reasonable using the
legs, rest time, and the need for electricity 24 hours per day.
Discuss the practical implications of your results.

69. Integrated Concepts

A 105-kg basketball player crouches down 0.400 m while
waiting to jump. After exerting a force on the floor through this
0.400 m, his feet leave the floor and his center of gravity rises
0.950 m above its normal standing erect position. (a) Using
energy considerations, calculate his velocity when he leaves
the floor. (b) What average force did he exert on the floor?
(Do not neglect the force to support his weight as well as that
to accelerate him.) (c) What was his power output during the
acceleration phase?
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Test Prep for AP® Courses

7.1 Work: The Scientific Definition
1. Given Table 7.7 about how much force does the rocket
engine exert on the 3.0-kg payload?

Table 7.7

Distance traveled with rocket
engine firing (m)

Payload final
velocity (m/s)

500 310

490 300

1020 450

505 312

a. 150 N
b. 300 N
c. 450 N
d. 600 N

2. You have a cart track, a cart, several masses, and a
position-sensing pulley. Design an experiment to examine
how the force exerted on the cart does work as it moves
through a distance.

3. Look at Figure 7.10(c). You compress a spring by x, and
then release it. Next you compress the spring by 2x. How
much more work did you do the second time than the first?

a. Half as much
b. The same
c. Twice as much
d. Four times as much

4. You have a cart track, two carts, several masses, a
position-sensing pulley, and a piece of carpet (a rough
surface) that will fit over the track. Design an experiment to
examine how the force exerted on the cart does work as the
cart moves through a distance.

5. A crane is lifting construction materials from the ground to
an elevation of 60 m. Over the first 10 m, the motor linearly
increases the force it exerts from 0 to 10 kN. It exerts that
constant force for the next 40 m, and then winds down to 0 N
again over the last 10 m, as shown in the figure. What is the
total work done on the construction materials?

Figure 7.47
a. 500 kJ
b. 600 kJ
c. 300 kJ
d. 18 MJ

7.2 Kinetic Energy and the Work-Energy
Theorem
6. A toy car is going around a loop-the-loop. Gravity ____ the
kinetic energy on the upward side of the loop, ____ the kinetic

energy at the top, and ____ the kinetic energy on the
downward side of the loop.

a. increases, decreases, has no effect on
b. decreases, has no effect on, increases
c. increases, has no effect on, decreases
d. decreases, increases, has no effect on

7. A roller coaster is set up with a track in the form of a
perfect cosine. Describe and graph what happens to the
kinetic energy of a cart as it goes through the first full period
of the track.

8. If wind is blowing horizontally toward a car with an angle of
30 degrees from the direction of travel, the kinetic energy will
____. If the wind is blowing at a car at 135 degrees from the
direction of travel, the kinetic energy will ____.

a. increase, increase
b. increase, decrease
c. decrease, increase
d. decrease, decrease

9. In what direction relative to the direction of travel can a
force act on a car (traveling on level ground), and not change
the kinetic energy? Can you give examples of such forces?

10. A 2000-kg airplane is coming in for a landing, with a
velocity 5 degrees below the horizontal and a drag force of 40
kN acting directly rearward. Kinetic energy will ____ due to
the net force of ____.

a. increase, 20 kN
b. decrease, 40 kN
c. increase, 45 kN
d. decrease, 45 kN

11. You are participating in the Iditarod, and your sled dogs
are pulling you across a frozen lake with a force of 1200 N
while a 300 N wind is blowing at you at 135 degrees from
your direction of travel. What is the net force, and will your
kinetic energy increase or decrease?

12. A model drag car is being accelerated along its track from
rest by a motor with a force of 75 N, but there is a drag force
of 30 N due to the track. What is the kinetic energy after 2 m
of travel?

a. 90 J
b. 150 J
c. 210 J
d. 60 J

13. You are launching a 2-kg potato out of a potato cannon.
The cannon is 1.5 m long and is aimed 30 degrees above the
horizontal. It exerts a 50 N force on the potato. What is the
kinetic energy of the potato as it leaves the muzzle of the
potato cannon?

14. When the force acting on an object is parallel to the
direction of the motion of the center of mass, the mechanical
energy ____. When the force acting on an object is
antiparallel to the direction of the center of mass, the
mechanical energy ____.

a. increases, increases
b. increases, decreases
c. decreases, increases
d. decreases, decreases

15. Describe a system in which the main forces acting are
parallel or antiparallel to the center of mass, and justify your
answer.

16. A child is pulling two red wagons, with the second one
tied to the first by a (non-stretching) rope. Each wagon has a
mass of 10 kg. If the child exerts a force of 30 N for 5.0 m,
how much has the kinetic energy of the two-wagon system
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changed?
a. 300 J
b. 150 J
c. 75 J
d. 60 J

17. A child has two red wagons, with the rear one tied to the
front by a (non-stretching) rope. If the child pushes on the
rear wagon, what happens to the kinetic energy of each of the
wagons, and the two-wagon system?

18. Draw a graph of the force parallel to displacement exerted
on a stunt motorcycle going through a loop-the-loop versus
the distance traveled around the loop. Explain the net change
in energy.

7.3 Gravitational Potential Energy
19. A 1.0 kg baseball is flying at 10 m/s. How much kinetic
energy does it have? Potential energy?

a. 10 J, 20 J
b. 50 J, 20 J
c. unknown, 50 J
d. 50 J, unknown

20. A 2.0-kg potato has been launched out of a potato cannon
at 9.0 m/s. What is the kinetic energy? If you then learn that it
is 4.0 m above the ground, what is the total mechanical
energy relative to the ground?

a. 78 J, 3 J
b. 160 J, 81 J
c. 81 J, 160 J
d. 81 J, 3 J

21. You have a 120-g yo-yo that you are swinging at 0.9 m/s.
How much energy does it have? How high can it get above
the lowest point of the swing without your doing any additional
work, on Earth? How high could it get on the Moon, where
gravity is 1/6 Earth’s?

7.4 Conservative Forces and Potential Energy
22. Two 4.0 kg masses are connected to each other by a
spring with a force constant of 25 N/m and a rest length of 1.0
m. If the spring has been compressed to 0.80 m in length and
the masses are traveling toward each other at 0.50 m/s
(each), what is the total energy in the system?

a. 1.0 J
b. 1.5 J
c. 9.0 J
d. 8.0 J

23. A spring with a force constant of 5000 N/m and a rest
length of 3.0 m is used in a catapult. When compressed to 1.0
m, it is used to launch a 50 kg rock. However, there is an
error in the release mechanism, so the rock gets launched
almost straight up. How high does it go, and how fast is it
going when it hits the ground?

24. What information do you need to calculate the kinetic
energy and potential energy of a spring? Potential energy due
to gravity? How many objects do you need information about
for each of these cases?

25. You are loading a toy dart gun, which has two settings,
the more powerful with the spring compressed twice as far as
the lower setting. If it takes 5.0 J of work to compress the dart
gun to the lower setting, how much work does it take for the
higher setting?

a. 20 J
b. 10 J
c. 2.5 J
d. 40 J

26. Describe a system you use daily with internal potential
energy.

27. Old-fashioned pendulum clocks are powered by masses
that need to be wound back to the top of the clock about once
a week to counteract energy lost due to friction and to the
chimes. One particular clock has three masses: 4.0 kg, 4.0
kg, and 6.0 kg. They can drop 1.3 meters. How much energy
does the clock use in a week?

a. 51 J
b. 76 J
c. 127 J
d. 178 J

28. A water tower stores not only water, but (at least part of)
the energy to move the water. How much? Make reasonable
estimates for how much water is in the tower, and other
quantities you need.

29. Old-fashioned pocket watches needed to be wound daily
so they wouldn’t run down and lose time, due to the friction in
the internal components. This required a large number of
turns of the winding key, but not much force per turn, and it
was possible to overwind and break the watch. How was the
energy stored?

a. A small mass raised a long distance
b. A large mass raised a short distance
c. A weak spring deformed a long way
d. A strong spring deformed a short way

30. Some of the very first clocks invented in China were
powered by water. Describe how you think this was done.

7.5 Nonconservative Forces
31. You are in a room in a basement with a smooth concrete
floor (friction force equals 40 N) and a nice rug (friction force
equals 55 N) that is 3 m by 4 m. However, you have to push a
very heavy box from one corner of the rug to the opposite
corner of the rug. Will you do more work against friction going
around the floor or across the rug, and how much extra?

a. Across the rug is 275 J extra
b. Around the floor is 5 J extra
c. Across the rug is 5 J extra
d. Around the floor is 280 J extra

32. In the Appalachians, along the interstate, there are ramps
of loose gravel for semis that have had their brakes fail to
drive into to stop. Design an experiment to measure how
effective this would be.

7.6 Conservation of Energy
33. You do 30 J of work to load a toy dart gun. However, the
dart is 10 cm long and feels a frictional force of 10 N while
going through the dart gun’s barrel. What is the kinetic energy
of the fired dart?

a. 30 J
b. 29 J
c. 28 J
d. 27 J

34. When an object is lifted by a crane, it begins and ends its
motion at rest. The same is true of an object pushed across a
rough surface. Explain why this happens. What are the
differences between these systems?

35. A child has two red wagons, with the rear one tied to the
front by a stretchy rope (a spring). If the child pulls on the
front wagon, the ____ increases.
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a. kinetic energy of the wagons
b. potential energy stored in the spring
c. both A and B
d. not enough information

36. A child has two red wagons, with the rear one tied to the
front by a stretchy rope (a spring). If the child pulls on the
front wagon, the energy stored in the system increases. How
do the relative amounts of potential and kinetic energy in this
system change over time?

37. Which of the following are closed systems?
a. Earth
b. a car
c. a frictionless pendulum
d. a mass on a spring in a vacuum

38. Describe a real-world example of a closed system.

39. A 5.0-kg rock falls off of a 10 m cliff. If air resistance
exerts a force of 10 N, what is the kinetic energy when the
rock hits the ground?

a. 400 J
b. 12.6 m/s
c. 100 J
d. 500 J

40. Hydroelectricity is generated by storing water behind a
dam, and then letting some of it run through generators in the
dam to turn them. If the system is the water, what is the
environment that is doing work on it? If a dam has water 100
m deep behind it, how much energy was generated if 10,000
kg of water exited the dam at 2.0 m/s?

41. Before railroads were invented, goods often traveled
along canals, with mules pulling barges from the bank. If a
mule is exerting a 1200 N force for 10 km, and the rope
connecting the mule to the barge is at a 20 degree angle from
the direction of travel, how much work did the mule do on the
barge?

a. 12 MJ
b. 11 MJ
c. 4.1 MJ
d. 6 MJ

42. Describe an instance today in which you did work, by the
scientific definition. Then calculate how much work you did in
that instance, showing your work.
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